西门子6ES7241-1AA22-0XA0正规授权
1 引言
随着国民经济的快速发展,高速列车大大tigao了交通运输效率,同时也增加了对安全性的要求,如何在列车高速运行的情况下保证铁路设备的安全问题也变得越发重要。以原有的人工维修保障体制保证设备的安全,不仅费时费力,而且难以适应发展后的铁路系统的各种客观需要。根据以往我们开发工业监控系统的经验,结合铁路系统的特点,开发了适合铁路系统的微机监测系统,利用其采集大量信号,通过这些信号可以了解设备的运行状况并分析故障产生原因,它在保证铁路列车安全运行、及时发现故障、分析故障及保证铁路维修体制改革实现状态修方面发挥了不可缺少的作用。利用PLC作为微机监测系统的数据采集机可以保证其高可靠性要求。
2 需求分析
铁路系统关系到人民生命财产的安全,所以铁道信号微机监测系统必须具备以下特点:
(1) 高可靠性
监测系统在寿命期限内能在恶劣条件下平稳可靠运行,将故障率降至低;
(2) 抗干扰性强
微机监测系统是暴露在铁路沿线运行的,所处的环境相对恶劣,为了tigao数据采集和数据传输的可靠性,避免发生错误报警,系统必须具有较强的抗干扰性;
(3) 可扩展性与可维护性
与铁路系统的扩建相对应,监测系统应该易于扩展和维护;
(4) 高性价比
完成状态检修的微机监测系统作为列车的辅助设备,不应投入太多资金,应该在低成本下操作。
根据系统要求的高可靠性和强抗干扰性,选用PLC作为系统的采集机。系统实现要解决的关键问题就是PLC的资源较少,我们必须经过合理分配,有效利用有限的资源。
以广深铁路线某站为例,需要采集1024个开关量,128路轨道电压,6路外供电压,40路转辙机电流,768路电缆绝缘值,50路电源屏电压。设计铁道信号微机监测系统时,必须根据铁路系统运行特点和要求,采取一些特殊的技术和方法,建立适用的全面反映铁路系统及设备的宏观运行状态的系统,更有效的管理整个铁路系统的运行。
3 系统构成
3.1 系统总体结构
总体上看,本论文所要介绍的GSWJ型铁道信号微机监测系统结构可分为三部分:即采集电路—前置部分;下位机—采集机;上位机—监测机三个部分。各部分的作用分析如下:
(1) 采集电路
·对所有被监测量实现保护、隔离,将隔离后的信号转换为标准电压或电流信号;
·下位机(采集机)的控制下,将所有代表被监测参数的标准电压或电流信号,分类依次送至PLC相应的数据采集口。
(2) 下位机(采集机)
依照程序或上位机发出的检测命令,向采集电路发出相应的控制信号,对采集电路送至采集口的信号进行采集,对采集的数据进行相应的综合,并将所采集的数据整理后存入相应的数据缓冲区,完成与上位机数据通讯。根据本站需求,本系统采用OMRON CS1系列PLC作为数据采集机;
(3) 上位机(监测机)
·通讯管理:上、下位机之间各种类型数据通讯的管理;
·数据管理:对采集的各类数据建立数据库,各种参数、图表、曲线的绘制,以及显示、查询和打印各种报警信息。
本系统中,利用Dephi语言编写上位机程序,实现通讯管理和数据管理。
3.2 系统实现的几个关键问题
从系统的需求分析可以看出,铁道信号微机监测系统需要采集的数据量大,对可靠性和安全性很高,而且需要系统在低成本方式下运作,如何合理配置,使资源得到有效利用是设计重点和难点,下面阐述几个关键问题的解决方法。
(1) 系统采集方式的选择
铁路系统中,由于监测的信息点多,且各种被监测量要求的采集周期不同,如开关量要求的采集周期为250ms,轨道电压的采集周期为2min,如果采用常规的点对点采集,会大大增加系统成本,所以系统采用分类集中的信号采集方式,将同类信号集中并作相应的保护,经过切换,利用一个A/D口输入。另外,由于本系统是用于广深铁路线上,地处南方多雷击地区,而且电气化的高速铁路本身会产生高达几万伏的冲击电压,因此监测系统必须保证有很强的抗干扰性。系统采用欧姆龙公司的CS1系列PLC作为采集机,同时,对所有被采集的信号都作了隔离和保护。
图1 各种被监测量的并联式结构采集方框图
如图1所示,系统采用并联式结构,这样的结构方式将被采集的物理量按类集中,分为开关量和模拟量两大类,采集回路结构清晰,易于发现故障。
(2) 开关量采集方法
开关量采集回路如图2所示。
图2 开关量采集方框图
开关量采集原理: 4位开关量输出信号经过译码得到16位地址,根据地址将1024个开关量分成16组采集,每次采集64位,利用两块32口的开关量输入模块。
(3) 模拟量采集方法
根据铁道部有关规程,外供电压、轨道电压、转辙机电流等模拟量要求不同的采集方式,例如外供电压和轨道电压采用巡测采集方式,即巡回检测采集;转辙机电流采用中断式采集方式,即当转辙机发生动作时才采集相应的数据;绝缘检测的采集方式是命令式,这是因为绝缘检测是带电检测,在保证列车安全运行的情况下,必须由工作人员通过上位机发出指令采集相应的绝缘值。根据这些不同要求,系统中利用不同的模拟量采集回路实现。图3示出128路轨道电压采集回路框图。由前置电路通过隔离、滤波、保护等前置电路处理采集的模拟信号,变成1~5V标准电压信号,经过两级切换,在PLC中经A/D转换后,用0-4000的数字量线性表示。
图3 128路轨道电压采集回路框图
(4) PLC与上位机通信流程
上位机与PLC的通信流程大致如下:
系统监测的信息点多,采集方式不同,因此系统实现的另一个的难点就是对不同数据的通讯管理。系统需要采集的数据有1024个开关量,128路轨道电压信号,64路外供电信号,16路转辙机电流等,由于采用串口与上位机通讯,通讯资源有限[1>,按照铁道部有关规定,将数据的优先级规定为:开关量信号,外供电压信号,转辙机电流信号,轨道电压信号,对优先级高的数据优先处理,程序流程如图4所示。
图4 程序流程框图
采用这种通讯方式的特点是程序结构简单清晰,通信简单,可扩展性强,能保证重要数据的优先传送。缺点是通讯速度较慢,在调试中发现,128路轨道电压全部传到PLC中需要大约3s,但在铁路系统中,这样的通讯速度已能满足要求。
4 程序流程分析
(1) 程序说明
主程序给每一类被采集数据分配一个缓冲区[2>,根据优先级处理数据,将需要通讯的数据写入通讯缓冲区中,然后与上位机通讯。
系统要求将变化的开关量传送到上位机进行显示,PLC程序中,给开关量分配两个存储单元D1和D2,将次采集的开关量存入D1,下一次采集到的数据存入D2,另外为开关量分配了一个环形数据缓冲区H1~H50,缓冲区中每个存储单元的存储容量为67个字,其中1024个开关量占64个字,一个标志字表示发生变化的开关量组,另外2个字用来表示开关量发生变化的时间(年,月,日,小时,分钟,秒,毫秒)。环形数据缓冲区的结构如图5所示。缓冲区作用是:将需要存储的开关量按顺序存入缓冲区,50个存储单元存满后,第51个数据再存入第1个存储单元,这样就将这个缓冲区循环利用,有效使用了PLC的有限资源。
图5 环形数据缓冲区的结构图
(2) 开关量采集程序流程
将次采集的开关量存入D1,下一次采集到的数据存入D2,比较D1和D2,看数据是否相等,如果相等,直接进行下一次巡视;如果不等,说明开关量发生变化,系统要求将变化的开关量送入上位机,此时将D2种的数据送入缓冲区Hi中,并设立标志,增加地址指针,同时用D2覆盖D1的数据,程序流程如图6所示:
图6 开关量采集流程框图
5 结束语
采用OMRON CS1系列PLC作为数据采集机的GSWJ微机监测系统已经在该站投入运行,5年来,系统运行正常,保证了铁路列车安全运行,并准确采集各项数据,及时发现故障和分析故障产生原因,另外,系统的报表输出功能减轻了值班人员人工抄表的劳动强度。微机监测系统部分实现了铁路系统自动控制,从整体上tigao了企业的管理水平,且各项技术指标均达到设计要求。
1 引言
电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
电动机常见的故障可分为对称故障和不对称故障两大类。对称故障包括:过载、堵转和三相短路等,这类故障对电动机的损害主要是热效应,使绕组发热甚至损坏,其主要特征是电流幅值发生显著变化;不对称故障包括:断相、逆相、相间短路、匝间短路等,这类故障是电动机运行中常见的一类故障。不对称故障对电动机的损害不仅仅是引发发热,更重要的是不对称引起的负序效应能造成电动机的严重损坏。因而,对大型电动机进行综合保护非常重要。
2 基于PLC的电动机综合保护
对电动机的保护可以分为以下几类:
在电动机发生故障时,为了保护电动机,减轻故障的损坏程度,继电保护装置的快速性和可靠性十分重要。在单机容量日益增大的情况下,电机的额定电流可达数千甚至几万安,这就给电动机的继电保护提出了更高的要求。传统的继电保护装置已经无法满足要求,因此微机保护应运而生。
javabbbbbb:if(this.width>screen.width-333)this.width=screen.width-333" border=0>
PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、设计施工周期短、调试修改方便、而且体积小、功耗低、使用维护方便。因此,本文研究了基于可编程控制器(PLC)的电动机综合监控和保护系统的方法。
3 系统硬件设计
3.1 系统的总体结构
基于可编程控制器(PLC)的电动机综合监控和保护系统的总体结构如图1所示。
3.2 PLC机型选择及扩展
选择PLC机型应考虑两个问题:
(1) PLC的容量应为多大?
(2) 选择什么公司的PLC及外设。在本系统中,包含以下输入输出点,见附表,本系统共包括12路开关量,7路模拟量。
SIMATIC S7-200系列PLC是由西门子公司生产的小型PLC,其特点是:SIMATIC S7-200系列PLC适用于各行各业,各种场合中的检测,监测及控制的自动化,S7-200系列的强大功能使得其无论在独立运行中,或相连成网络皆能实现复杂控制功能,因此S7-200系列具有极高的性能/价格比。
S7-200 CPU 224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,大扩展至168路数字量I/O点或35路模拟量I/O点;13K字节程序和数据存储空间;6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器;1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力;I/O端子排可以很容易地整体拆卸,是具有较强控制能力的控制器。根据系统的实际情况,结合以上特点,SIMATIC S7-200 CPU 224完全可以作为本系统的主机。
CPU224可扩展7个模块,而其本身具有14输入/10输出共24点数字量,因此已无须数字量扩展模块。但由于有7路模拟量输入,故需选择模拟量输入模块。S7-200系列提供了EM231,EM232,EM235等模拟量扩展模块。根据以上技术数据,选择两个EM231作为模拟量输入模块,这样共可以扩展4×2=8路模拟量输入。
4 系统软件设计
4.1 主程序
程序开始,从输入单元检测输入量,首先判断KM是否闭合,如果闭合,说明电动机已经处于运行状态,此时应无法按下启动按钮,若KM未曾闭合,则说明电动机处于停机状态,可以按启动按钮。接着判断启动按钮是否按下,若是,则继续下面的程序,若否,则重新检测。如果按钮已经按下,则检测电动机是否启动,若是,则继续下面的程序,若否,则转入欠压保护子程序,若是电动机已经启动,则判断起动是否成功,若是,则继续下面的程序,若否,则转入起动保护。如果电动机已经正常起动,则绿灯亮。接着判断停止按钮是否按下,若否,则继续下面的程序,若是,则程序直接结束,开始下一次扫描。
如果停止按钮并未按下,即电动机仍然在运行中,则进行运行过程中的故障判断,首先检测是否发生短路故障,方法是:检测三相电流,再判断Imax是否大于整定值,若是则跳转至保护动作子程序段,电动机起动短路保护,警报响,并且短路故障指示灯亮。若否,则继续下面的程序。接着判断是否发生断相故障,方法是:检测三相电流,判断是否有某相电流为零,或者检测Umn,判断是否不为零,如果其中之一满足,则跳转至保护动作子程序段,电动机起动断相保护,警报响,并且断相故障指示灯亮。若否,则继续下面的程序。接着判断是否发生欠压故障,方法参见欠压保护子程序说明。接着判断是否发生接地故障,方法是:检测I0,若大于整定值则跳转至保护动作子程序段,电动机起动接地保护,警报响,并且接地故障指示灯亮。接着判断是否发生过负荷故障,方法是:检测三相电流,若到达整定时限后,电流仍大于整定值,则跳转至保护动作子程序段,电动机起动过负荷保护,警报响,并且过负荷故障指示灯亮。若判断未发生过负荷故障,则程序完成一次扫描,再次从条开始,进行第二次扫描,所以结束是指一个循环的结束,并不是整个程序的结束。
4.2 欠压保护子程序
在该程序段中,采集A相和C相的电压量,求出其平均值,再与整定值相比较,若小于整定值,则跳转至保护动作子程序段,电动机起动欠压保护,警报响,并且欠压故障指示灯亮。若未发生欠压故障,则直接结束本次循环。
4.3 起动时间过长保护子程序
在该程序段中,采集三相电liuliang,若发现在起动过程中,电流大于整定值,或在整定时间到达后,电流仍大于另一整定值,则跳转至保护动作子程序段,起动时间过长保护动作,警报响,并且起动故障指示灯亮。