西门子6ES7214-1AD23-0XB8供应现货
1、前言
我们都知道,使用传统的普通平头设备的进行工件的平头操作,平头面的光滑度和平面度,会受到刀具的jingque程度以及操作人员的熟练程度等诸多因素的影响。鉴于存在这种问题,我们研制了数控平头机,它可以按照输入的进刀曲线连续工作,始终保持高精度和高效率,从而充分保证平头质量。
2、控制要求
数控平头机控制要求为:
(1)控制系统应可调整刀头加工程序;
(2)不同的加工阶段可以选择不同的加工速度和加工深度。空程的时候的进刀曲线如图1所示,加工时的进刀曲线如图2所示;
(3)主轴转速应可调节,且范围应宽广;
(4)加工jingque度高,加工材料平面的光滑度要求为Ra≤1.6μm;
(5)定尺尺寸精度:±0.5mm
3、系统的硬件设计
根据系统的控制要求配置硬件如下:
可编程控制器:1个西门子公司的S7-200系列CPU222PLC;
人机界面:1个DP210;
外设:2个步进电动机、2个步进电机驱动器、2个三相电动机、1台变频器、1个EM222、8个电磁开关、4个光电传感器和1个霍尔传感器。
3.1 系统的I/O点分配
由硬件结构图可知,系统需要5个输入点和14个输出点.CPU222PLC有8个输入点和6个输出点,因此需要增加一个扩展模块,选用8点输出的数字量扩展模块EM222.输入点是I0.0-I0.7;输出点是Q0.0-Q0.5和Q1.0-Q1.7,分配情况见下表1和表2:
3.2 控制器
系统的关键的设备部分是PLC。PLC是以单片机为核心专门用于工业过程自动化控制的电脑器件,具有极高的可靠性和稳定性。本系统选用西门子公司的S7-200系列CPU222PLC作为控制的核心,利用CPU222的2路独立的20KHz的高速脉冲输出来控制步进电动机的运动。此高速脉冲信号不能直接驱动步进电动机,需通过步进电机驱动器将功率放大后才能起作用。5路数字量输入分别与5个传感器相连接,用来判断步进电机的位置、工件的位置、刀头的位置。14路数字量输出中,有6路用来控制步进电机驱动器,8路用来控制电磁阀开关。
PLC本机有一个通讯口,为标准的RS-485借口,在PLC与上位机进行通讯时需将RS-485接口转换成标准的RS-232接口,可以采用四门子提供的隔离型PLC/PPI电缆进行转换。该电缆有拨码开关可以进行设置。在上位几上将控制软件编写好后,通过此线下载程序并监视程序的运行情况。为了降低成本,在程序调试好以后就可以不必用上位机进行操作和控制,而是用简单的操作面板即可。本系统选择是DP210操作面板。
3.3 系统的外设
根据系统对刀具加工精度的高要求,选用步进电机来控制加工程序。步进电机可以jingque到一个脉冲,在本系统中一个脉冲的精度是0.005mm。步进电机驱动器用于驱动步进电机,从而控制刀头的动作,完成平头。步进电机驱动器接收到PLC的信号,包括CP步进脉冲信号,DIR方向信号,FREE脱机信号,经过其内部的功放电路和处理电路后输出到后面连接的两相步进电机。步进电机根据信号的编号来产生相应的动作。电磁阀直接接受来自PLC的控制信号产生动作。另外,PLC直接接受传感器的信号,通过内部程序的运算和逻辑判断来决定输出。
变频器用来控制主轴三相电机的转速。本系统中变频器采用基本参数运行模式,由电位器来设定运行频率,变频器的启动和停止由外部端子控制.根据不同工件的特点,通过旋转电位器来改变主轴电机的转速,外部端子的信号由PLC的第12路数字量输出控制。
4、系统的软件设计
系统的软件包括人机交互界面DP210程序和系统的主控程序。DP210程序完成操作人员同PLC之间的对话,主要是各个操作画面之间的相互转换和每个操作画面当中各个按键动作所对应的PLC程序的控制位。程序画面要与生产现场的工作流程相适应,越是前面的画面就越是使用率高的画面。
PLC程序接收到DP210的操作信号后,按照工作要求进行整个刀头工作的控制。主程序的流程图如图3所示。PLC主控程序中的核心控制是对步进电机的控制,启动1#步进电机的程序如图4,控制电机方向的程序如图5。
5、结束语
本文所设计的系统操作简单,加工产品范围广,加工精度高,已经成功应用于生产实践中。该平头机目前已经在某材料生产厂进行规则几何体的平头。自从开始生产以来,该系统运行稳定,产品质量显著提高,废品率明显下降。同时,极大的减轻了操作人员的劳动强度,提高了生产效率,还可以用于其它器件的平头。此外,我们设计一定范围内的刀头尺寸以适应不同工件尺寸的平头动作,且具有可更换功能。
、前言
可编程控制器(PLC)由于其运算速度高、指令丰富、功能强大、可靠性高、抗干扰性强而广泛应用于各种工业控制部分,在智能现场控制系统中,选用PLC作为控制器是十分有效的。本文以汽车传动轴防尘罩的检测为背景,着重讨论一种基于PLC控制的模拟汽车传动轴防尘罩实际运行环境的高低温试验箱控制系统的研制。
汽车传动轴防尘罩的作用是防止灰尘、杂质等进入前轮传动轴的连接处,同时也防止高温润滑油从中溢出。根据有关规定,本系统要求防尘罩在2500转/分下保持其的断裂延展特性,在-60~150℃下,能通过1~6千万次循环试验。在此情况下,我们受委托对汽车传动轴防尘罩高低温试验箱进行改造,以工控机为人机接口,采用PLC程序控制系统。
1、系统功能分析
传动轴防尘罩温度试验的基本要求是:在规定的温度下,以一定的转速运行一定的时间。交替设定温度、转速及时间(多为4组)循环一定次数构成一个测试阶段。测试过程多可设4个阶段,每个测试阶段的循环次数由测试员现场设定。实验中主要控制量有试验箱内温度(-60~150℃)、传动轴转速(0~1500rpm)、固定角及滑动角角度、测试时间(1~60000分)及阶段循环次数。测试过程要求调整固定角及滑动角的角度、启动温度控制系统使温度逐步达到设定值、使传动轴在设定的转速下运行规定的时间。现场设定不同的条件交替测试,循环一定周期。
根据测试要求,系统应具有手动,自动操作功能。手动操作时,操作人员可以直接控制电机、压缩机、加热器等设备的启停,进行设备维修,调试和试验等;自动操作时,测试装置自动完成整个测试过程。另外,控制系统还应具有完善的保护功能以保护人员及设备安全。任何时候都可以强行停止测试。若测试过程因故障原因终止,需要记录故障原因及测试进展状况。
2、控制系统的设计与实现
2.1 控制系统硬件结构设计
本系统人机界面部分采用台湾研华公司生产的奔腾机,软件部分采用Delphi编程,在系统中协调控制,打印输出,过程值显示,控制核心部件为OMROM的可编程控制器,它负责各控制系统所需要的各种逻辑控制和运算。被控对象有变频调速系统和温度系统。变频调速由日本安川公司生产的变频器驱动传动轴电机,使传动轴保持一定的转速。温度控制系统是一个典型的闭环控制系统,温度测量元件为铂电阻,由PLC控制电加热器及压缩机,实现加热或制冷。加热系统由三个电加热管组成,制冷系统由两级压缩机组成,其通断由PLC控制。
为实现检测控制要求,本系统采用日本立石(OMRON)公司CPM2A-40CDR-A的PLC作为主控单元。其输入点数为24点,输出点数为16点。该PLC具有体积小,重量轻,运行可靠,保护方便等特点。系统除了基本的开关量的输入/输出外,还配有模拟量的输入/输出扩展单元。模拟量输入单元用于接收Pt100热电阻温度信号,模拟量输出单元控制变频器输出频率,实时检测全部模拟信号,进行工程量转换,并与设定的上下值比较,开关量单元用于控制电机的启停,故障的报警等。 PLC的I/O分配和功能如图1所示。
图1 I/0分配与功能图
2.2 变频器控制系统
本系统的传动轴转速由变频器控制。控制部分主要由PLC、变频器、光电接近开关组成。传动轴旋转部分采用日本SANKEN公司IF-7.5K变频器驱动变频电机。采用转速闭环矢量控制,调速范围0~2500r/min,调速精度<0.02%。PLC通过模拟量输出单元将0~6000的数字量信号转换成4~20mA电流信号给变频器作为频率输出设定。传动轴实际转速反馈信号由PG光电接近开关检测输出,其输出脉冲经PLC计算作为电机的速度负反馈信号。
根据生产工艺对系统运行时稳态精度及跟随能力的要求,变频器内部的PID调节器设定为比例积分调节方式,由PLC的速度给定值与由脉冲编码器检测的现场速度反馈值比较后,得到速度偏差,经比例积分控制器处理后,输出的二次电流信号作为频率输出,送矢量控制系统,控制电机运行。恒功率的分界点以及它们的频率范围内的P.I值,由现场负荷调试确定,已达到佳运行效果。
因为转角电机的频繁快速启停,制动时经常会产生很高的泵升电压,因所选变频器为交-直-交电压源时,泵开电压不能回馈电网,故采用制动单元并配以电阻加以吸收。当变频器直流电路升高到一定值(660VDC)时,制动单元中的IGBT管被触发导通,接通制动电阻回路,将转角电机的回馈电能消耗在制动电阻上,以满足快速停止的要求。
2.3 温度控制系统
试验箱内的温度调节范围为-60℃~150℃,具体值由操作员现场设定。系统加热时采用三个晶闸管控制的电加热管,合上主回路的操作开关,整个加热装置开始运行,未达到设定温度时,固态继电器SSR1吸合,1号加管加热,系统逐级开启2号,3号加热管。达到设定温度时,进入保温阶段,采用控制3号,2号加热器的输出通断来调功调温。使用控制箱风机来保证温度均匀变化。如果箱内温度达到高温界限,系统将会报警。
单级蒸汽压缩制冷所能达到的蒸发主要取决于冷凝温度及压力比,对于氟利昂制冷剂,一般压力不超过10,这样采用单级蒸汽压缩制冷循环,一般只能制取-20~-40℃的低温因此采用单级蒸汽压缩制冷循环将无法满足本系统制取-60℃低温的要求,在此情况下,决定采用两台低温压缩机组成的复叠式制冷系统,两级复叠制冷系统将级蒸发器与第二级冷凝器复叠在一起,使第二级低温制冷剂在-35℃左右冷凝,在-80℃左右蒸发,以获得系统所需要的低温。
图2 温度控制系统电路图
3、PLC控制系统的软件设计
为了方便调试和编程,整个软件系统采用模块化编程,主要由手动运行模块,自动运行模块和故障诊断和报警模块。在软件编制时,采用了一些抗干扰措施,增强了整个系统的抗干扰能力,在计算机上可以实现实时操作,控制并观察现场各设备的运行情况。
当系统处于手动运行时,PLC接收各设备状态,由此判断各设备的运行状态,可单独运转变频电机、加热器、制冷系统的压缩机。便于系统的调试和维修。
系统自动运行时,只须按照计算机屏幕提示,设置操作参数,,试验即完全自动进行下去,并在计算机屏幕上实时显示各设备参数。试验过程中或试验结束后,均可按照提示选择打印方式打印。以下重点介绍温度控制子程序。
由于系统采用三套晶闸管控制的电加热器。常用的控制方式有两种:一种是分段开关控制,根据温度的高低,逐级开启或关闭加热器。这种方法温度偏差大,精度较低。另一种是PWM脉宽调制,在PLC中实现PWM程序比较复杂。回路中的电加热器为满足温度恒定的需要,经常切换工作状态,而常规的电磁继电器开关触电易磨损,寿命短。所以对种方法进行改进。
由于系统是二阶系统,在系统温度下降时,增加加热管,温度由于惯性的原因,温度继续下降一段时间后再上升,同样减少加热管,温度会上升一段时间后再下降。我们将前后两次测量值进行比较,得到温度偏差e,系统根据e来控制加热器的状态转换。当e较大时,此时通过逐级打开加热器来调整温度。
启停切换顺序为:启动顺序:1# 2# 3#;停止顺序:3# 2# 1#;温度的变化值e: e=Ti-Ti-1。其中Ti ,Ti-1分别是本次温度采样值与前次温度采样值,并记试验箱温度允许上限为HSP,允许下线为LSP。PV为温度测量值。考虑到前后两个采样周期的变化温度e变化不大。当当前温度值PV+前一个周期变化温度值e﹥温度设定上限HSP时,就减少加热管。反之,当PV+e﹤LSP时,就增加电加热管。程序框图如图3所示。
图3 温度控制流程图
电气系统已设计了各种保护,并直接作用至断电,其中包括:缺相保护、过载保护、旁路保护。 其中变频器具有短路、过载等保护功能,当变频器所驱动的电机发生短路、过载等故障时,变频器将自动切断一次供电回路,进入保护状态并输出报警信号,系统把各故障点相应的接触器、短路器等元件的辅助触电接到PLC,PLC扫描输入这些触电的状态,并通过PLC程序将这些状态存放在数据存储区,再结合控制程序和设备预置状态进行逻辑分析,判断设备或元件是否出了问题。
4、结束语
可编程控制器(PLC)控制的汽车传动轴防尘罩高低温试验箱可以控制传动轴转动速度、调整其运行环境温度、实时监测试验箱内各种变量状态、灵活处理数据的通信,并将数据实时显示在计算机上,而且可以将所得的数据进行存储打印输出,以便后查。大大提高了系统的效率。<
1 概 述
在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台
(1)液压滑台,用于切削量大,加工精度要求较低的粗加工工序中;
(2)机械滑台,用于切削量中等,具有一定加工精度要求的半精加工工序中;
(3)数控滑台,用于切削量小,加工精度要求很高的精加工工序中。
可编程控制器(简称PLC)以其通用性强、可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点,被广泛应用于工业自动控制中。特别是在组合机床自动生产线的控制及CNC机床的S、T、M功能控制更显示出其卓越的性能。PLC控制的步进电机开环伺服机构应用于组合机床自动生产线上的数控滑台控制,可省去该单元的数控系统使该单元的控制系统成本降低70~90%,甚至只占用自动线控制单元PLC的3~5个I/O接口及<1KB的内存。特别是大型自动线中可以使控制系统的成本显著下降。
2 PLC控制的数控滑台结构
一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,
伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。
3 数控滑台的PLC控制方法
数控滑台的控制因素主要有三个:
3.1 行程控制
一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。由数控滑台的结构可知,滑台的行程正比于步进电机的总转角,因此只要控制步进电机的总转角即可。由步进电机的工作原理和特性可知步进电机的总转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数:
n= DL/d (1)
式中 DL——伺服机构的位移量(mm)
d ——伺服机构的脉冲当量(mm/脉冲)
3.2 进给速度控制
伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率:
f=Vf/60d (Hz) (2)
式中 Vf——伺服机构的进给速度(mm/min)
3.3 进给方向控制
进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A-AB-B-BC-C-CA-A…时步进电机正转;当绕组按A-AC-C-CB-B-BA-A…顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。
4 PLC的软件控制逻辑
由滑台的PLC控制方法可知,应使步进电机的输入脉冲总数和脉冲频率受到相应的控制。因此在控制软件上设置一个脉冲总数和脉冲频率可控的脉冲信号发生器;对于频率较低的控制脉冲,可以利用PLC中的定时器构成,如图2所示。脉冲频率可以通过定时器的定时常数控制脉冲周期,脉冲总数控制则可以设置一脉冲计数器C10。当脉冲数达到设定值时,计数器C10动作切断脉冲发生器回路,使其停止工作。伺服机构的步进电机无脉冲输入时便停止运转,伺服执行机构定位。当伺服执行机构的位移速度要求较高时,可以用PLC中的高速脉冲发生器。不同的PLC其高速脉冲的频率可达4000~6000Hz。对于自动线上的一般伺服机构,其速度可以得到充分满足。
5 伺服控制、驱动及接口
5.1 步进电机控制系统的组成
步进电机的控制系统由可编程控制器、环行脉冲分配器和步进电机功率驱动器组成,控制系统中PLC用来产生控制脉冲;通过PLC编程输出一定数量的方波脉冲,控制步进电机的转角进而控制伺服机构的进给量;同时通过编程控制脉冲频率——既伺服机构的进给速度;环行脉冲分配器将可编程控制器输出的控制脉冲按步进电机的通电顺序分配到相应的绕组。PLC控制的步进电机可以采用软件环行分配器,也可以采用如图1所示的硬件环行分配器。采用软环占用的PLC资源较多,特别是步进电机绕组相数M>4时,对于大型生产线应该予以充分考虑。采用硬件环行分配器,虽然硬件结构稍微复杂些,但可以节省占用PLC的I/O口点数,目前市场有多种专用芯片可以选用。步进电机功率驱动器将PLC输出的控制脉冲放大到几十~上百伏特、几安~十几安的驱动能力。一般PLC的输出接口具有一定的驱动能力,而通常的晶体管直流输出接口的负载能力仅为十几~几十伏特、几十~几百毫安。但对于功率步进电机则要求几十~上百伏特、几安~十几安的驱动能力,因此应该采用驱动器对输出脉冲进行放大。
5.2 可编程控制器的接口
如伺服机构采用硬件环行分配器,则占用PLC的I/O口点数少于5点,一般仅为3点。其中I口占用一点,作为启动控制信号;O口占用2点,一点作为PLC的脉冲输出接口,接至伺服系统硬环的时钟脉冲输入端,另一点作为步进电机转向控制信号,接至硬环的相序分配控制端,如图3所示;伺服系统采用软件环行分配器时,
6 应用实例与结论
将PLC控制的开环伺服机构用于某大型生产线的数控滑台,每个滑台仅占用4个I/O接口,节省了CNC控制系统,其脉冲当量为~0.05mm,进给速度为Vf=3~15m/min,完全满足工艺要求和加工精度要求。