西门子模块6ES7253-1AA22-0XA0货期较快
随着国民经济的发展,电网容量和用电负荷的日益增长,电力系统对自动化和可靠性的要求越来越高。近十几年来,由于微处理器技术和通信技术的发展,在电力系统自动化方面形成了许多基于微处理器技术的单项自动化系统,随着这些系统的不断增加,许多本该共享的数据,仍然还是各自采集和分别处理,形成了一个个“自动化孤岛”,它不仅增加了不少软硬设备投入,同时也很难保证各装置数据的一致性。随着网络技术的发展,80 年代末期,国内外就开始注意着手解决“孤岛”间题,就是在站内全面应用计算机技术,充分利用信息资源以达到提高系统可靠性和利用率的目的,即所谓的“系统集成”。集成包括横向的功能集成,也包括纵向的各层面向对象的集成,因而推动了开放式系统平台的出现。
开放式系统平台意味着系统各部分设备提供符合的各种接口,计算机之间的数据共享,以及提供给用户的通用友好界面等。“平台”思想因其良好的标准化和开放比,越来越降遍地为大家所接受。
电力系统自动化对可靠性的需求,使人们注意到“PLC ”(可编程逻辑控制器)这种高可靠性和强抗工业干扰的技术。90年代以来,PLC 发展迅猛且应用的局域网技术日趋成熟,产品不断向系列化、标准化发展,在自动化控制领域中,新一代的PLC 改进为PCC (Progammable Computer Controller)已逐渐跃居主导地位,成为实现自动化控制的关键技术,在电力系统也不例外。
PCC 是新一代“可编程计算器控制器”,是专为在工业环境下应用而设计的数字运行电子系统,采用“面向用户的指今”, 因此编程方便;它直按应用于工业环境,具有更强的抗干扰能力、更高的可靠性、广泛的适应能力和应用范围;大容量的存储能力、标准通信接口,基于过程总线的系统互联、语言开发和运行环境,自诊断能力,都使得PCC 为变电站自动化提供了出色的友好“平台”。
PCC 在变电站自动化中的应用
面介绍应用PCC 实现的智能分布式系统运用于某供电局的一个110KV 变电站的例子。系统按分布式结构设计,采用开放系统、分层控制等先进的计算机设计思想,将计算机技术、通信和网络技术、数据库技术、图形和图像技术、多媒体技术、数据采集和自动控制技术有机地结合在一起,技术成熟,运行经验丰富,能够满足近期的功能要求和远期的发展需要。整个设计遵照国际90年代IEC1000系列标准,满足ISO900l 。从现场投运以来,运行稳定,技术趋于成熟。
系统容量(包括远期规划)
AI = 188
DI = 256
DO = 40
PI = 96
整体系统配置图
监控部分PCC模块示意图
变电站自动化系统结构示意图
首先,上位机和网关单元组成智能分布式系统结构的变电站层。
上位机通过PROFIBUS 网络与三个主要PCC 采集控制单元(ST1, ST2 , ST3 )相连,上位机相当于PROFIBUS 网上的一个结点。PROFIBUS ( Process Field Bus)网络是一种高速数据链路,是具有标准通讯能力的开放式现场总线,用于PCC 与PCC 之间,或与其它接到本网络上的智能设备(如显示单元PANELWARE ,上位机等)间传送数据和系统状态。网络协议符合德国国家标准D IN19245 ,传送介质为带屏蔽的双绞线(或光缆),通道存取方式为令牌(TOKEN )方式,在网络上任一结点地位平等。
上位机既可以单机运行,也可以采用多机及网络方式运行;软件平台采用32 位多任务、多进程设计,可支持bbbbbbs95 / 98 / NT 操作系统软件,配有多种应用软件接口,并支持OEM 开发,为用户提供了二次开发平台;硬件平台可采用小型机、微型机或工作站等设备。
网关单元ST1上的IFO5O 通讯模块以及CPU 内部均提供RS485 接口与继保单元相连。网关单元还提供与外界进行通讯的接口,如RS232口通过拨号MODEM 接入市话网,以便于远程诊断;或者经路由器接入TCP / IP 远程网。
若用户具备与internet 连接的条件,变电站层还可以提供PVI浏览器方案,实现远方读取数据。
其次,PROFIBUS 网上的各采集控制单元组成智能分布式系统结构的采集层。
遥测实行交流采样,遥测主单元ST3 通过net2000与两个遥侧子单元相连,利用CP153上的RS485 串行口通信。远传功能通过IF060 提供的RS232 串行口来实现。
电度量通过遥测子单元1上的DIXXX 模块采集脉冲计数来实现。
遥信/遥控单元实现数字量的采集和输出控制。
第三,智能分布式系统结构的外围层为设备层,包括采集层用到的传感器、二次控制回路等。
设备层根据现场总线( CANBUS ,PROFIBUS )网络传输速率快(> = 50OkbS ) ,软硬件实现简单等特点,可以CANBUS (上述实例是通过RS485 等)来连接变电站内的其他自动化装置和保护单元、故障录波、馈线子站及无功补偿设备等的主干网,并通过现场总线网络连接到采集层,与上一层进行必要的数据通讯。
本实例系统的CPU 、专用的网络模块(NW150)和通讯模块(IFXXX )提供了多种标准通信接口( TTY ,RS422 , RS232 , RS485 ) ,使得CPU 的局部I / 0 总线扩展、远程扩展I/0 (通过RS485 电缆)以及CPU 间的现场总线组网非常灵活,从而方便地实现系统纵向或横向集成。系统软、硬件方面良好的自诊断功能,可把故障范围减至小。又由于PCC 的CPU采用68 000+RISC 的32 位微处理器,具有极强的运算处理能力,可使大量运算、控制功能、保护功能分散在各智能单元,大大提高了站内通信网的利用率,使整个系统效率达到高。
本系统具有可扩充的模块化结构、电源、CPU 、网络板(NWXXX )、I/O 板(数字量输入输出板DIXXX / DOXXX 、模拟量输入板AIXXX 等)、串口板等都是独立的模板以总线方式连接在底板( BASEPLATE)上,它取代了标准的框架装配的局限性,可在标准的DIN 轨道上任意拆装、组合。
另外每个单元都有一电源模块PSXXX ,并且总在左边。系统电源是系统可靠性与完整性的保证,PCC 的输入电压有AC 、DC 两种,可实现交/直流切换。
发展前景
从上例可以看出,继承了PLC 与微机技术的PCC 技术形成的代自动化软件硬件平台结构,具特点包括:
●高可靠性的元件、适应于工业环境运行的设计。
●采用32 位CISC 和RISC 的CPU,大容量存储器,实时操作系统、支持计算机网络通讯、采用语言编程和梯形图逻辑设计的标准软件硬件平台。
●高效率的标准现场总线PROFIBUS、支持Peer-to-Peer的网络通讯方式和分布式处理,实现当地通讯,标准化软硬件模块设计,减少电缆,降低建设投资和运行维护费用。
●配置灵活,容易在线扩充修改。
●易于实现横向纵向功能集成,达到实时信息的全局共享,实现白动化。
●应用软件开发的支持,不仅适合稳态的数据采集,也适合瞬态信号的采集。
●本地/远程诊断。
开放式系统平台是当前变电站自动化发展的方向。由于综合需要,网络技术、通讯协议的标准、分布式技术和数据共享、新的算法的研究以及随之而来的经济效益的研究等是当前变电站自动化研究的热点问题。PCC 应用为变电站自动化提供了广阔的前景。现代的PCC 与微机的发展相互渗透,已是一种可提供诸多功能的成熟的用户应用控制系统,而不是一种简单的逻辑控制器,它已被开发出更多的接口与具它控制设备进行通信、生成报告,多任务调度,可诊断白身故障及机器故障,这此优势使PCC 可以实现各种变电站运行、分析与控制功能,符合当今的变电站自动化系统及站内自动化设备的高要求。利用PCC 和现场总线局域网络组成变电站自动化系统不仅满足变电站对系统的功能结构要求,而且具有很高的性能价格比,是值得进一步探讨的一种可行性方案。
一、概述
一件电镀产品的质量除了要有好的成熟的电镀工艺和品质好的镀液添加剂外,如何保证电镀产品严格按照电镀工艺流程运行和保证产品的电镀时间则是决定电镀产品质量和品质的重要因素。在电镀生产线上采用自动化控制不但可以使电镀产品的质量和品质得到严格的保证,有效的减少废品率,而且还可以提高生产效率和减轻工人的劳动强度,有着非常好的经济效益和社会效益,电镀生产线上对行车的自动控制则是电镀生产线自动化控制的关键。
电镀生产线按照其工艺要求和规模一般设计有两台行车、三台行车和四台行车工作,每台行车都根据已编制好的各自的程序运行;对于行车的自动控制,早期是采用继电器逻辑电路和顺序控制器,发展至今其控制方式已采用可编程控制器PLC作为核心控制部件,其控制更为安全、可靠、方便、灵活,自动化程度更高。本文介绍在一条电镀自动生产线上用PLC结合变频器控制三台行车的自动控制系统,该自动控制系统在广东省中山市的一家外资风扇厂得到很好的应用。
二、硬件结构
在一条电镀自动生产线上有三台行车既各自独立工作,又互相通过信号联系,每台行车上安装一台由交流接触器驱动的锥形电动机负责工件上、下,由一台变频器驱动的普通电动机负责行车前进、后退。系统硬件结构框图如图1。
由于电镀自动生产线上有三台行车同时自动工作,所以系统采用了三台PLC和三台变频器,一台PLC和一台变频器控制一台行车;PLC选用的是三菱公司FX2n-48MR系列可编程控制器,变频器选用的是三垦公司ES-0.75K。行车在工作时通常都悬挂着电镀工件,如果行车在起动和停止的过程中速度太快或不够平稳,则悬挂的工件就容易掉下挂具,因此行车的速度用变频器控制使之可调,根据电镀生产线的实际情况,行车设计有快速、中速和慢速三种运行速度,频率分别设定为80Hz,40Hz和13Hz,行车作自动运行时,PLC通过检测安装在行车上的传感器的各种信号,向变频器发出指令,行车以慢速起动,运行平稳后就转人中速然后快速运行,在停止前,行车由快速转人中速,然后以慢速运行直至行车准确停在目标镀槽位置上;行车由慢速转中速转快速,再由快速转中速后转慢速,可以通过调整变频器的加、减速时间曲线平稳过渡。
行车动作步数显示主要是用于显示电镀工艺的执行过程,由PLC的输出口通过七段译码电路4511连接LED数码管显示,根据不同的电镀工艺要求,每台行车的动作步数从0步开始至几十步上百步不等,具体由PLC程序软件编制。
每台行车上安装有五个传感器,选用的是OMRON公司的电感式接近开关,其主要作用是负责行车上、下工件定位、镀槽定位以及行车运行过程向PLC发出变速信号等。
行车控制信号是通过外部的开关、按钮、按键等与PLC的输入端口连接,包括三台行车的联动控制和单台行车控制;单台行车控制只能控制本台的行车,不能控制另外的两台行车,单台行车控制设计有手动操作和自动运行模式选择、单周期和循环运行模式选择、紧急暂停以及行车程序动作步数的任意设定;联动控制设计有运行和复位操作按钮以及工艺选择,可以使三台行车自动、同步、循环不断地工作,可以选择不同的电镀工艺以镀出不同的工艺品种。
三、软件设计
系统软件设计程序流程框图如图2所示。
三台行车的主程序和调用的各个功能子程序都是一样的,但调用的工艺子程序就各不相同,每台行车根据自己在生产线上不同的工作区域执行的工艺编制不同的工艺子程序,本文给出一些主要的程序框图和就一部份主要的程序进行阐述。
1.系统初始化
初始化对于每一套系统程序都是必需的,每一次PLC上电或对PLC强制复位都要初始化,主要是对在程序中使用到的PLC各种计数器、定时器、寄存器等进行复位和设置,同时保留上次运行需要记忆的各种数据,完成运行前的各项准备工作。
2.复位和暂停子程序
由于行车在工作过程中有时会有突发事件或行车需要暂时停一下处理其它的工作,因此在系统中设计了复位和暂停两个功能,针对行车不同的情况和需要使用,为使行车在运行过程中可以随时对系统进行复位或暂停行车工作,实现这两个功能的程序都采用中断子程序,如图3是复位中断子程序,图4是暂停中断子程序。
在任何情况下按下复位按钮,程序都将转人复位中断子程序,停止所有动作输出并清零,动作步数显示清零,计数器、定时器、辅助继电器和寄存器等全部清零,所有记忆数据清除,同时程序转人初始化主程序,重复PLC上电工作过程,不同的是所有的运行记忆数据都清除了。
同样,在任何情况下按下暂停按钮,程序将进入暂停中断子程序,暂时停止PLC的输出,在暂停的状态下,可以进行手动操作行车,可以重新设置程序步,在恢复运行时使程序从所设置的程序步开始运行,当解除暂停时,如果没有重新设置程序步,暂停中断子程序就会恢复PLC原来的运行状态和原来的步数显示,继续暂停前的工作并从中断子程序返回。
3.工艺子程序
为了不浪费资源和提高生产效率,一条电镀自动生产线设计有三种电镀工艺,分别是镀仿金工艺、镀古铜工艺和镀镍工艺,每种工艺的工作流程各不相同,在实际使用时可以通过控制面板上的工艺选择开关加以选择,由于三个工艺子程序的软件编程方式基本相同,在本文中只用镀仿金工艺为例对工艺子程序进行阐述。
仿金工艺子程序框图如图5。
根据电镀自动生产线电镀工艺都是周期自动循环工作的特点,按照电镀工件在每一个不同的镀液槽中停留的时间,首先编写工艺流程曲线图,然后再由曲线图采用步进梯形图指令的形式来编制程序,每个工艺子程序的程序步各不相同,这里阐述的仿金工艺子程序的程序步是69步,属于较为复杂的步进控制。由于电镀自动生产线控制系统要求每种电镀工艺不但要能从0步(起点)开始运行,还要能从任意步开始运行,强调的是在实际使用过程中的方便和灵活。在进人仿金子程序时,程序首先调用置步情况检查,如果预先有置步(在操作面板上有动作步数显示),则表示本次工艺运行不是从0步(起点)开始执行,而是从所置的步数开始执行,如果没有预先置步,则表示本次工艺从0步开始由始点顺序执行,不论是从0步或是从所置的N步开始,程序都会顺序执行下去直到69步结束返回主程序。仿金子程序在运行当中可以随时通过暂停来设置重新开始的步数。每一个程序步里面都有行车的动作,包括电镀工件在镀槽里的提升和放下、行车走多少个镀槽、以那种速度运行、停留的时间等等。
4.单周期运行
在工艺子程序每一周期运行完毕返回主程序时,都要询问是单周期运行还是循环运行,如果是单周期,则程序运行完一个周期返回主程序初始化后的程序入口等待,当按压运行按钮时,程序又运行一个周期在同样的位置等待。设置单周期运行的功能主要是为了调试修改电镀工艺和程序。单周期运行在电镀自动生产线上是一个非常实用的功能。
四、结束语
用PLC辅以变频器对电镀自动生产线行车进行自动控制,具有结构简单、编程方便、操作灵活、使用安全、工作稳定、性能可靠和抗干扰能力强的特点,是一种很有效的自动控制方式,是电镀生产实现高效、低成本、高质量自动化生产的发展方向
1 引言
在纸机电气控制系统设计时,考虑到造纸机传动系统的特殊性,所以既要满足纸机传动控制系统的可靠性和良好的控制精度与稳定性,又要降低控制系统造价的原则。因此,我们选择西门子S7-400PLC和ABB—ACS800全数字多功能矢量控制变频器,利用PROFIBUS协议通信格式实现PLC与变频器的通信功能,组成该机的控制系统。
2 核心技术单元
2.1 ACS 800系列变频器简介
ACS 800系列变频器是ABB公司采用直接转矩控制(DTC)技术,结合诸多先进的生产制造工艺推出的高性能变频器。它具有很宽的功率范围,优良的速度控制和转矩控制特性。完整的保护功能以及灵活的编程能力。因而,它能够满足绝大多数的工业现场应用。DTC技术是 ACS 800的核心:直接转矩控制对交流传动来说是一个优的电机控制方法,它可以对所有交流电机的核心变量进行直接控制。它开发出交流传动前所未有的能力并给所有的应用提供了益处。
2.2 PROFIBUS概述及协议分析
PROFIBUS是Process Fieldbus的缩写,是由德国西门子公司提出的一种现场总线标准,现在已成为了一种国际性的开放式现场总线标准, 即EN50-170欧洲标准。目前世界上许多自动化技术生产厂家都为它们生产的设备提供PROFIBUS接口。PROFIBUS已经广泛应用于加工制造、过程和楼宇自动化,应用范围非常广泛。 PROFIBUS以其先进的技术和非凡的可靠性代表了当今现场总线的发展方向。
PROFIBUS根据应用特点分为PROFIBUS—DP,PROFIBUS—FMS,PROFIBUS—PA。三个版本,分别用于不同的场合。
PROFIBUS是一种现场总线,因此可以将数字自动化设备从底级(传感器/执行器)到中间执行级(单元级)分散开来。通信协议按照应用领域进行了优化,故几乎不需要复杂的接口即可实现。参照ISO/OSI参考模型,PROFIBUS只包含第l,2, 和7层。PROFIBUS协议层或子层说明如下:
(1)PROFIBUS第1层。第1层—PHY:第1层规定了线路介质、物理连接的类型和电气特性。PROFIBUS通过采用差分电压输出的RS485实现电流连接。在线性拓扑结构下采用双绞线电缆。树型结构还可能用到中继器。
(2)PROFIBUS第2层。第2层—MAC:第2层的介质存取控制(MAC)子层描述了连接到传输介质的总线存取方法。PROFIBUS采用一种混合访问方法。由于不能使所有设备在同一
时刻传输,所以在PROFIBUS主设备(masters)之间用令牌的方法。为使PROFIBUS从设备(slave)之间也能传递信息,从设备由主设备循环查询。
PR0fIBUS第2层FlC:第2层的现场总线链路控制(FLC)子层规定了对低层接口(LLl)有效的第2层服务,提供服务访问点(SAP)的管理和与LLI相关的缓冲器。
PROFIBUS第2层FMAl/2:第2层的现场总线管理(FMAl/2)完成第2层(MAC)特定的总线参数的设定和第1层(PHY)的设定。FLC和LLI之间的SAPs可以通过FMAl/2激活或撤消。此外,第1层和第2层可能出现的错误事件会被传递到更高层(FMA7)。
(3)PROFIBUS第3—6层。第3—6层在PROFIBUS中没有具体应用,但是这些层要求的任何重要功能都已经集成在“低层接口”(LLI)中。例如,包括连接监控和数据传输的监控。
(4)PROFIBUS第7层。PROFIBUS第7层LLI:低层接口(LLI)将现场总线信息规范(FMS)的服务映射到第2层(FLC)的服务。除了上面已经提到的监控连接或数据传输,LLI还检查在建立连接期间用于描述一个逻辑连接通道的所有重要参数。可以在LLI中选择不同的连接类型,主/主连接或主/从连接。数据交换既可是循环的也可是非循环的。
PROFIBUS第7层FMS:第7层的现场总线信息规范(FMS)子层将用于通信管理的应用服务和用于用户的用户数据(变量、域、程序、事件通告)分组。借助于此,才可能访问一个应用过程的通信对象。FMS主要用于协议数据单元(PDU)的编码和译码o
PROFIBUS第7层fMA7:与第2层类似,第7层也有现场总线管理(FMA7)。FMA7保证FMS和LLI子层的参数化以及总线参数向第2层(FMAl/2)的传递。在某些应用过程中,还可以通过FMA7把各个子层的事件和错误显示给用户。
(5)PROFIBUS ALI。ALI:位于第7层之上的应用层接口(ALI),构成了到应用过程的接口。ALI的目的是将过程对象转换为通信对象。转换的原因是每个过程对象都是由它在所谓的对象字典(OD)中的特性(数据类型、存取保护、物理地址)所描述的。
3 系统的控制网络组成
要想组成PROFIBUS网络,必须有两个条件。主站的网络组态工具和从站的GSD文件,两者缺一不可。主站的网络组态工具是一个网络组态软件,用来将各个站组成网络,设置网络参数和站的参数,并将已设置好的网络组态传送给主站。GSD文件称为设备数据库文件。对一种设备类型的特征GSD文件以一种准确定义的格式给出其全面而明确的描述。GSD文件由生产厂商分别针对每一种设备类型准备并以设备数据库清单的形式提供给用户,此种明确定义的文件格式便于读出任何一种PROFIBUS设备的设备数据库文件,并且在组态总线系统时自动使用这些信息。在组态阶段,系统自动地对输入与整个系统有关的数据的输入误差和前后一致性进行检查核对。
在组网时,必须先把你所须的从站的GSD文件装载到网络组态工具里。这样在网络组态工具里就有了你所须的从站的选项。用网络组态工具建一个你所需要的网络,并设置网络参数,然后在网络上添加你所须的站,并设置站的参数,后把设置好的网络组态传送给主站,这样就组建好了一个PROFIBUS网络。本控制系统结构图如图1所示。
系统选用ABB公司ACS800直接转矩控制(DTC)变频器,以PLC为控制中心, PLC通过PROFIBUS-DP现场总线与变频器构成DCS控制系统。PLC与上位机、现场触摸屏、变频器实行PROFIBUS高速通讯。
传动部下位控制中心为西门子S7-400 PLC,在PROFIBUS现场总线上S7-400 PLC是主站,选用CPU414-2 DP,有强大的通讯功能,自身带有一个PROFIBUS-DP接口,可与变频器及操作现场触摸屏采用PROFIBUS-DP总线实现高速通讯,完成整个纸机传动过程中的速度链、负荷分配、张力控制等功能。PLC接受上位机优化控制指令,可以根据纸张生产品种自动调节各分部速度以适应生产需求。同时PLC将各分部运行参数送往上位机,以便及时了解生产状况。
图中VVVF为ABB变频器、、OP1-OP8为操作台、PG为脉冲编码器、M为传动电机
整个系统全部实现全数字化操作控制,通过PROFIBUS现场总线通讯完成,简化了系统结构,提高系统的抗干扰能力。整个系统采用PROFIBUS现场总线控制技术,系统全部控制功能的实现都由现场总线通讯完成。只靠一条通讯电缆传输。系统中不在有整束的电缆,也省去了成千上万个线路接点。大大提高系统的可靠性,节约了控制电缆。同时实现了从操作到控制的全数字化。彻底杜绝了现场干扰对控制系统运行的影响。
图1 控制系统结构图
3.1 PLC主要完成功能
(1)、现场控制信号的采集,PLC通过PROFIBUS现场总线检测现场操作台操作信号。
(2)、速度链的控制及计算,PLC根据工艺要求完成速度链的控制处理。调节前一级速度时后一级紧随前一级的速度变化。调节后一级的速度时前一级速度不变。
(3)、速度控制的执行。PLC接受上位机控制指令,通过上位机操作,PLC可以根据纸张生产品种自动调节车速、分部变比以适应生产需求,并通过PROFIBUS现场总线控制各分部变频器的运行速度。
(4)、自动负荷分配控制功能,对与负荷分配点,PLC要完成负荷分配运算及控制。
(5)、PLC与触摸屏实行PROFIBUS现场总线高速通讯,将传动各分部点工作状态实时在触摸屏显示出来;并接受触摸屏上的操作指令,控制各传动执行相应的动作。
3.2 人机工程
本系统配有触摸屏8台,设立在控制现场,触摸屏上设有功能键、操作图形显示及设定值与实际值的显示等。还有变频器的运行状态及故障显示。可以对各传动点实现全部控制功能,具体控制功能如下:
(1) 起动/停止:用于控制本分部电机的起停控制。
(2) 爬行/运行:用于低速调试检修、正常抄纸切换。
(3) 单动/连动:对于要求负荷分配各传动点的单动/连动控制。
(4) 紧急停车:紧急停车功能。当纸机运行过程中出现意外事故,威胁到设备安全及人身安全时才可使用。
(5) 速度微增:用于本传动点的速度微调。
(6) 速度微减:用于本传动点的速度微调。
(7) 紧纸: 用于本传动点的紧纸调节。
(8) 松纸: 用于本传动点的松纸调节。
(9) 负荷分配功能:负荷分配点自动实现分配。
3.3 监测功能
(1) 变频器运行、故障状态显示。
(2) 电机的电流、转矩、分部线速度显示。
本系统所用的主站是西门子的PLC,从站是ABB的变频器。所以网络组态工具用西门子的STEP7软件内集成的网络组态工具进行组态,组态好后就可以编写控制程序了,从站的地址在主站的程序中可以直接使用,这样通过程序主站就可以对从站进行操作了。网络的通信自动运行,不需要控制程序参与。
4 系统的软件设计与功能实现
4.1控制系统的软件设计原则
(1)程序模块化结构化设计,其中负荷分配、速度增减、初始化、紧纸、速比计算、校验、数据发送、接收等作为子程序调用;
(2)程序采用循环扫描的方式对传动点进行处理,简化程序,提高程序执行效率;
(3)采用中断子程序进行数据的发送、接收;确保数据的准确快速的传输;
(4)必要的软件保护措施,以免造成重大机械损害。
因此该程序通用性强,可移植性好,使用不同的变频器,只须进行相应协议的格式的定义。即数据发送、接收、校验程序的相应修改即可,满足纸机运行的需要。主程序流程图如图2所示。
4.2 速度链设计及速差控制
速度链结构采用二叉树数据结构算法,完成数据传递功能。首先对各传动点位置进行数学抽象,确定速度链中各传动点编号,此编号应与变频器内部地址一致。然后根据二叉树数据结构,确定各结点的上下、左或右编号。即任一传动点由3个数据(“父子兄”或“父子弟”)确定其在速度链中的位置,填入位置寄存器数值。如图3所示。
该传动点速度给变频器后,访问位置寄存器,确定子寄存器结点号,若不为0,则对该经点进行相应处理,直到该链完全处理完;再查兄弟寄存器结点号,处理另一支链。所以只须对位置寄存器初始化,即可构成具有任意分支结构的速度链。
算法设计采用了调节变比的控制方法。如图五所示,纸机二压点作为速度链中的主节点,它的速度就是整个纸机的工作车速。在 PLC内,我们通过通信检测到车速调节信号则改变车速单元值,同时送给驱网、吸移、真压、一压分部,其速度值乘以相应的速比,即是该传动点的速度运行值。若某一分部速度不满足运行要求,说明该分部变比不合适,可通过操作该分部的加速、减速按钮实现,PLC检测到按钮信号后调整了变比,使其适应传动点间的速差控制要求。相当于在PLC内部有一个高精度的齿轮变速箱,可以任意无级调速。
若正常生产中变比合适,需要紧纸、松纸操作时,按下该分部紧纸、松纸按钮,PLC将对应在速度链上附加一正或负的偏移量则实现紧纸、松纸功能。同时送下一级计算,依此类推,构成速度链及速差控制系统。前一级车速调整,后面跟随调整,后级调整不影响前级,适应纸机操作引纸的顺序要求。速度链的传递关系由图4来体现,由PLC软件实现。
图4 纸机速度链结构图
4.3 负荷分配的设计
负荷分配分三部分(如图五虚线范围内部分)。1)驱网辊与伏辊; 2)吸移辊、真空压榨辊与一压辊与二压辊; 3)施胶上辊与施胶下辊。
负荷分配的软件实现,首先基于合理的速度链结构,如图5所示。采用主链与子链相结合的结构,使具有负荷分配的传动点组在子链结构上,进行负荷动态调整时不影响其它传动点的状态。
在纸机传动系统中,因为在有机械相联系的传动点由于所处位置不同,毛布的包角大小不一样,承受的载荷在不同的工作状态下不一样,是一个变量。实际系统还要求各传动点电机负载率相同,即δ=Pi/Pie相同(Pi为i电机所承担负载功率,Pie为电机额定功率)。在实际控制当中,由于电机功率是一间接量,实际控制电机定子电流或转矩代替电机功率,进行读取计算、调节。在一组负荷分配传动点中选取包角较大且功率较大的传动点作为主点,其余各点利用PLC通过总线读取电机电流或转矩,分别与主点电流或转矩进行比较,并以PID调节算法,相应调节从点变频器的输出,使其电流或转矩百分比与主点一致,而达到负荷分配的自动分配的目的。
为了保护机械装置和避免PLC调节过于频繁,在软件中设置上下限幅值。如果负荷不平衡度大于3%,PLC才进行调整。如负荷分配不平衡度调整量设置太小,容易造成震荡。如果大于不平衡上限幅值,进行停机处理,以防止机械损害发生。
5 结束语
基于西门子公司PROFIBUS-DP协议的S7-400PLC纸机电气传动三级控制系统,较理想地实现了对该纸机的控制,纸机的稳速精度、动态响应、负荷分配效果、纸页质量、系统稳定性、可靠性都得到了用户的认可和赞许。纸机(为幅宽4200/450,工作车速为550m/min的纸机)在河北香河银象纸业稳定运行已近二年。实践证明,该结构控制方式可应用于大型、高速纸机的电气传动控制