西门子6ES7214-2BD23-0XB8货期较快
1 引言
矿用隔爆型真空馈电开关(以下简称馈电开关),适用于煤矿井下和其它周围介质中含有爆炸性气体的环境中,在中性点不接地的三相电网中,作为配电总开关或分支开关之用。本文介绍开关采用智能型保护器,性能可靠,动作准确,具有欠压、过载、短路、漏电闭锁、选择性漏电保护功能,并可外接远方分励脱扣按钮。
目前国内馈电开关产品一般是由分立元器件或单片机组成的控制核心,结构复杂,安装调试困难;抗干扰能力差,故障率高,元件的分散性对保护的可靠性和稳定性影响很大;显示采用普通数码管或指示灯,不直观。国外同类产品也普遍采用PLC系统组成,工艺水平较国内高。但是,一旦出现故障,维修跟不上,影响生产。另外,国外产品价格极高,是国内同类产品的十倍以上。
针对这种情况,某电器有限公司开发了一种新型智能矿用隔爆型高压真空电子馈电开关。该装置核心采用技术先进的工业可编程控制器PLC 和人机界面(文本显示器及设置键盘),构成的智能型综合保护控制器,使配电装置既可靠又安全。
2 馈电开关结构及保护原理
馈电开关的隔爆外壳呈长方形,用4只M12的螺栓与撬形底座相连,隔爆外壳上、下两个空腔,分别为接线腔与主腔。接线腔在主腔的上方,它集中了全部主回路与控制回路的进出线端子。主回路电源进线端子上罩有防护板。接线腔两侧各有两个主回路进出线喇叭口,可引入电缆外径为φ68~φ78的电缆。主腔由主腔壳体与前门包容组成,主要装有主体芯架和千伏级电源控制开关,前门采用快开门结构。
交流真空断路器安装在主体芯架左侧上方,三根进线直接接在断路器的进线端子上,三根出线则接在芯架反面的出线端子上。千伏级电源控制开关安装在主腔右侧壁上方,由连接套与主腔外的操作手把相连。过电压吸收装置安装在断路器的下方,控制变压器、电流互感器、零序互感器安装在主体芯架的反面,芯架正面还装有中间继电器、熔断器、电抗器、变压器,及两个插接件用以连接前门、接线腔七芯接线端子过来的插头和插座。
前门上装有观察窗、按钮、试验按钮、保护器整定按钮、保护器、保护器电源、PLC及显示屏等。 前门与外壳之间有可靠的机械联锁,当需要打开馈电开关前门时,首先须将右侧壁上的电源控制开关的手把打至断开位置(中间位置),断开控制电源,断路器因控制电路失电而自动分闸,然后拧进闭锁杆,使其里端进入电源开关手把的闭锁孔内,将电源开关闭锁与断开位置,其外端才能脱离前门上的限位块解除前门闭锁,此时方能打开前门,前门闭合的方法与打开的程序相反,从而实现了馈电开关前门闭锁后才能进行合闸操作。
系统原理框图如图1。该配电开关的线路保护功能需在高压互感器上采集三相电流、零序电流、一个线电压、零序电压、绝缘以及相敏共八路信号。这八路信号通过低压互感器,然后经过整流和滤波变成直流的标准信号,后进入PLC 以控制断路器的分闸输出。
PLC 对进入的电压信号进行计算,电压计算结果大于1.2 倍额定电压,显示过压,过压保护5s 内动作;电压计算结果小于0.8 倍额定电压,显示欠压,欠压保护5s 内动作;三相不平衡度计算结果大于0.7,显示断相,10~20s 内保护动作。电流计算结果中任何一相在6~10 倍额定电流范围内,显示短路,短路保护0.08s 内动作;电流计算结果中任何一相在1.2~6 倍额定电流范围内时,显示过载,过载保护按反时限特性动作。若线路发生漏电故障,根据相敏及电压信号漏电保护动作,切断线路。
3 控制系统
PLC使用和利时公司LM系列可编程控制器,LM系列PLC是和利时公司生产的小型一体化PLC。本应用中CPU模块选择本体上集成14 点输入/10点继电器输出的LM3107模块,模拟量输入选择和利时公司特有的电量采集模块LM3315模块,它为12 位精度,完成电压和电流采集的同时,完成功率计算。本模块能够满足井下比较恶劣环境,能够满足中性点不接地的供配电系统供电保护要求。系统中显示部件选用了和利时公司四行蓝色文本屏,通过串口以Modbus RTU协议与PLC通讯,实时显示采集值。控制系统配置图见图2。
4 控制功能
馈电开关控制系统通过软件编程主要完成功能为:
a) 参数设定
额定电流:额定电流的整定范围为100A----630A。
供电电压:供电电压的整定范围为660V和1140V二挡。
短路倍数:整定范围为3----10倍连续可调。
b) 漏电保护
漏电闭锁:1140V系统42K闭锁,50K恢复,660V系统 23K闭锁,28K恢复。
漏电故障:1140V系统23K保护,660V系统12.2K保护。
c) 过电流保护
按照煤炭行业标准要求,根据不同实际电流/额定电流的比值确定不同的动作时间,为了tigao保护准确性和灵敏性,B相与A、C相使用不同精度互感器。
d) 短路保护
在短路故障发生时,PLC得到的是一个缓慢上升的电压信号,因为从它发出切断指令到开关真正动作,存在一个故有的“机械动作延时”,为了使动作值准确,同时满足不大于100 mS的时间要求,PLC的判定值一定要超前要求的动作值,从而弥补了“机械动作延时”所带来的不良后果。
e) 模块自检保护
本程序具有模块自检功能,当PLC出现故障时,本装置具有如下保护:
PLC自诊断:当扩展模块出现故障时, 有“模块故障”报警画面。
模块供电电源丢失时,有“模拟量模块一无电源”和“模拟量模块二无电源”的报警画面。
f) 性能试验功能
漏电试验:是利用继电器外接1K电阻实现的。
短路试验:模拟电流是“额定电流”与“短路倍数”的积送内存单元。
过载试验:为1.9Ie,动作时间为60秒,因为动作时间较长,为此在程序中设置了显示。
g) 故障记忆功能:
装置能对近50次故障进行记忆,并可分别报出十四种故障,包括动作时间和动作值。进入故障记忆画面和在内进行上下翻页时具有人性化风格,改变了过去的车轱轳转方式。
h) 开机时间记忆功能:
本装置能记忆“累计带电时间”和“累计吸合时间”
除了上面罗列的基本功能本馈电开关还有漏电电阻、电压、电流以及功率显示功能,移动变压器温度超限、瓦斯超限、高压据动、低压据动等功能。
5 结束语
本配电开关的控制系统以我国煤矿电气设备特性为基础,吸纳了国际先进的智能化技术和结构形式,使用PLC控制系统代替分立电子元器件或单片机,实现了对井下供电系统的控制、保护和计量,具有性能好、可靠性高、稳定性强和开发周期快等特点。
另外值得注意的是LM3315模块的特点,本模块非常适合应用到馈电开关系统,完全可以满足在井下苛刻工作环境中的配电系统电量采集和保护要求。主要体现2个特点:
1、电量计算的功能
本模块可以通过采集三相电的电流、电压及各相电流之间的相位差,准确地计算出配电系统的总有用功率和总无功功率以及功率因数。
2、过流保护
LM3315模块对输入电流瞬时值进行监测,过流时直接通过模块芯片上硬件中断控制继电器动作,切断电流通路。
过流保护时间由以下3部分组成:T1:从过流信号加到输入端子,到该信号传输到AD输入端子,这部分时间主要为互感器的延时(互感器之后没有容性滤波电路),互感器延时约为15微秒,因此这部分延时不超过0.02ms。T2:从过流信号加载到AD芯片IN+、IN-端子到该电流值被采集之后芯片引脚上输出保护控制信号,这段时间在5ms左右(程序里面每隔4.2ms查询一次)。T3:继电器动作时间。在上电后正常工作时继电器闭合,出现过流时,继电器再次释放(release),继电器释放时间为2ms(典型值)。
所以模块过流保护时间为T1+T2+T3<10ms,这在其它品牌的PLC中是不可能实现的,利用此模块的馈电开关过流保护到真空断路器动作时间完全可以控制在30ms的时间内,大大tigao馈电开关的性能。
、系统概述
艾默生PLC和变频器在浆纱机上的应用,此电气系统采用PLC集中管理,分散控制,系统集中化,简约化,易控性强,更好的降低故障率。 方案配置如下:
PLC系统由艾默生EC202416BAR主模块,16点的数字量输入模块和4路模拟量输出模块组成。
操作界面采用工业级液晶触摸屏,可动态修改控制参数,方便显示当前速度,当前匹长、匹数及系统的动态运行状态。
边轴电机变频器采用高性能通用型的EV2000系列,织轴收卷TD3300 22KW张力变频器。此变频器是张力专用变频器,内置张力控制功能。采用独立变频模式,结构简单,维护方便,稳定度高,保证收卷的张力及线速度,在小卷到大卷的变化过程中稳定可靠。在加减速中的自动补偿控制,使加减速中张力更稳,更有上卷防断纱程序,使上卷起机时便于操作。
本系统的优点:
张力设定在人机上设定,人性化的操作;
使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等;
卷径的实时计算,jingque度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值;
因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好;
在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期短,基本上两三天就能安装调试完成;
克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。
机台上的所有操作部分全部采用36V以下的安全电,以保证操作中的使用安全。
二、系统框图
三、张力控制原理
所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转矩。真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到像真正的张力控制的效果,张力不是很稳定。肯定会影响产品的质量。
变频收卷的实质是要完成张力控制,即能控制电机的运行电流,因为三相异步电机的输出转矩T=CmφmIa,与电流成正比。并且当负载有突变时能够保证电机的机械特性曲线比较硬。所以必须用矢量变频器,而且必须要加编码器闭环控制。用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。
卷径的计算原理
根据V1=V2来计算收卷的卷径。因为V1=ω1×R1,V2=ω2×Rx。因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即L1/Δt=L2/Δt,Δn1×C1=Δn2×C2/i
(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比)
Δn1×π×D1=Δn2×π×D2/i
D2=Δn1×D1×i/Δn2,因为Δn2=ΔP2/P2
(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的圈数)。Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由编码器接到PLC。那么D2=D1×i×P2/ΔP2,这样收卷盘头的卷径就得到了。
收卷的动态过程分析
要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定。需要进行转矩的补偿。整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系。在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴。这样就分析出了收卷整个过程的转矩补偿的过程。
总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩。
转矩的补偿标准
1) 静摩擦转矩的补偿
因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了。因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿。
2)滑动摩擦转矩的补偿
滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的。补偿的大小以收卷电机的额定转矩为标准。补偿量的大小与运行的速度有关系。所以在程序中处理时,要分段进行补偿。
3)加减速、停车转矩的补偿
补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。
相关的计算公式
四、调试过程
(1)先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。
(2)将编码器的信号接至变频器,并在变频器上设定编码器的圈数。然后用面板给定频率和启停控制,观察显示的运行频率是否在设定频率的左右波动。因为运用闭环矢量控制时,运行频率总是接近设定频率,所以运行频率是在设定频率的附近波动的。
(3)在程序中设定空芯卷径和大卷径的数值。通过前面卷径计算的公式算出电机尾部所加编码器产生的大脉冲量(P2)和低脉冲量(P2)。通过算出的大脉冲量对收卷电机的速度进行限定,因为变频器用作张力控制时,如果不对高速进行限定,一旦出现断纱等情况,收卷电机会飞车的。低脉冲量是为了避免收卷变频器运行在2Hz以下,因为变频器在2Hz以下运行时,电机的转矩特性很差,会出现抖动的现象。
(4)通过前面分析的整个收卷的动态过程,在不同卷径和不同运行速度的各个阶段,进行一定的转矩补偿。补偿的大小,以电机额定转距的百分比来设定。
2 系统结构及功能
系统采用IBMPCPAT 工业控制机和PCC- 2005 模块,整个系统由上位管理和下位控制机构成,系统构成如图1 所示。
用于锅炉本体数据采集及燃烧控制的PCC - 2005IPO 模块有:
模拟量输入模块3AI755.6
模拟量输出模块3AO775.6
热电阻输入模块3AT350
热电偶输入模块3AT652.6
接口模块3IF060.6
应用程序模块3ME963.90–1
电源模块3PS792.9
智能控制模块4C220 - 110
LCD 显示模块4D1164.00 - 090。
上位机主要完成过程的监控,通过3IF接口模块与各个炉台进行通信。
系统的功能:
(1) 锅炉水位三冲量控制,高低水位报警,极限低水位、高水位报警。
(2) 炉堂负压自动调节。
(3) 燃烧自动调节,通过热效率自动寻优实现佳风煤比。
(4) 手动、自动无扰切换。
(5) 蒸汽压力自动调节,超气压报警,并自动按顺序压火。
(6) CRT 画面显示。
a. 流程图 显示实时显示开关量,模拟量,报警器状态,根据状态改变颜色及动态显示;
b. 参数图 按报表方式在CRT上显示设定值,过程值,累计值热效率等技术参数;
c. 棒状图 根据过程参量在CRT上显示,同时显示过程量值;
d. 设定图 按回路的棒状图在CRT上显示回路设定值、过程值、输出值。在此状态下可对回路参数进行设定;
e. 定时或随机打印报表;
f . 完善的系统自诊断功能,可诊断浮球水位计、水位变送器、温度变送器、压力变送器的错误,并根据结果改变控制方式及报警。
3 控制原理
3. 1 锅炉汽包水位自动控制
给水调节系统的任务是与锅炉蒸发量相平衡,并维持汽包水位在工艺规定的范围,给水系统采用三冲量自动调节。水位控制流程如图2 所示。
冲量控制的主反馈信号为水位差压变送器的输出,辅助反馈信号为蒸汽liuliang,给水liuliang。水位调节采用自整定变型PID 控制算法,在大偏差时自动分离积分作用。并在水位越限前施行安全限控制。三冲量控制特点是:控制阀门阀位维持水位的恒定,水位平稳克服虚假水位的影响。
3. 2 燃烧控制系统
锅炉燃烧系统控制关键是风P煤配比的控制,系统自动修正风P煤比,使风煤配比始终是佳的,也就保证了锅炉始终在高的热效率下工作。
本系统中采用了自寻优技术,使得当环境工况条件发生变化时,系统自动修正风P煤配比,使风煤配比始终是佳的,也就保证了锅炉始终在高的热效率下工作。
4 控制软件结构
4. 1 控制软件
控制软件采用模块化程序结构,整个程序主要分为5个部分(见图3) 。
4. 1. 1 初始化模块 主要完成A/D ,D/A 模块,各数据区的初始化工作。
4. 1. 2 数据采集模块 主要完成模拟量采集、滤波及累积计算。
4. 1. 3 故障诊断模块 主要完成锅炉系统及变送器、执行器的故障诊断功能。
4. 1. 4 动态寻优模块 主要完成风煤比的动态寻优及存储数据的积累。
4. 1. 5 控制算法模块 主要完成水位控制、燃烧控制、负压控制,能根据系统诊断结果及寻优状态进行不同控制方式的切换。
4. 2 系统的监测软件
包括各种画面的显示、报表的打印、参数的设定等。程序结构如图4 所示。
图4 程序结构框图
软件系统分为主程序和中断服务程序,主程序完成系统的初始化和人机界面的管理。包括显示器管理,键盘管理,命令处理模块,时钟管理,改字处理模块等。中断服务程序完成与下位机的通信,工程量变换,自动报警处理,历史数据存储。