6ES7214-2AD23-0XB8大量现货
一、简介
钢筋笼主筋通过自动上料到分料架;分料架的主筋需人工穿过固定盘导管到达移动盘导管,并经过电动工具将主筋固定在移动盘导管上;盘筋(绕筋)经过矫直器后焊接在主筋上;然后开始正常焊接,固定盘及移动盘同步旋转且移动盘按照预先设定的速度(行走速度可根据操作工人的熟练程度经行调整)前进,同时进行焊接,从而生产出成品钢筋笼。
二、工艺要求
上料→穿筋(主筋)→固定→搭上箍筋→开始焊接→正常焊接→终止焊接→切断箍筋→分离固定盘→松筋→分离移动盘→卸笼→降下液压支撑→移动盘归位。
三、机器特色
加工速度快: 正常情况下备料及滚焊部分3-5人一班,分二班作业,平均一小时就可以加工一个12米长的笼子。(过程包括备料、滚焊、卸笼,加强筋安装、不包括探测管安装、导向垫块安装等),对于高铁施工中1.6米桩的笼子曾经有日产75节9米的笼子(675米/天)的生产记录,工作效率非常高。
加工质量稳定可靠:由于采用的是机械化作业,主筋、缠绕筋的间距均匀,钢筋笼直径一致,给下桩时钢筋笼的对接节约时间,另外焊点饱满均匀,钢筋笼质量坚固,不会在下桩过程的吊装中出现散架情况。产品质量完全达到规范要求。在实际中手工生产钢筋笼时工程监理几乎每天都到加工现场进行检查,而使用机械加工后,监理对机械化加工的钢筋笼基本实行了“”。
箍筋不需搭接,较之前作业节省材料8%,降低了施工成本。
由于主筋在其圆周上分布均匀,多个钢筋笼搭接时很方便,节省了吊装时间。
四、方案
该控制系统采用维控人机界面LEVI102L,PLC主机采用LX3V-48MT+BD2AD2DA构成。
通过设定不同速度,达到两台伺服同步运行,一台伺服跟随运行。设备的同步和跟随精度要求比较高,对plc和伺服配合控制设备的安全稳定运行要求较高。
五、程序简要介绍
HMI程序
PLC部分程序:
六、工程总结
1、此工程使用维控plc的高速脉冲指令,速度和位置上都很,达到设备要求。
2、此工程使用模拟量输入BD板,模拟量检测非常,确保设备正常稳定运行。
3、此工程使用485通讯,对伺服命令的时间和稳定性非常好。
七、机器图片
在冶金企业中,有大量的工业用水用于冷却,为此每天要消耗大量的水资源,由于用过的冷却水中含有大量的氧化铁杂质,不宜多次循环使用。为了保护环境、节约用水,需要对含有氧化铁杂质的污水进行净化处理。
2、系统介绍:
污水净化处理系统组成示意图如下:
图1、污水净化处理系统组成示意图
2.1工艺流程介绍:
(1) 滤水工序:打开进水阀和出水阀,污水流经磁滤器时,如果磁滤器的线圈一直通电,则污水中的氧化铁杂质会吸附在磁滤器的磁铁上,使水箱中流出的是净化水。
(2) 反洗工序:滤水一段时间后,必须清洗附着在磁铁上的氧化铁杂质。这时只要切断磁滤器线圈的电源,关闭进水阀和出水阀,打开排污阀和压缩空气阀,让压缩空气强行把水箱中的水打入磁滤器中,冲洗磁铁,去掉附着的氧化铁杂质,使冲洗后的污水流入污水池,进行二次处理。
2.2控制任务和要求:
(1) 两台机组的滤水工序,可单独进行,也可同时进行。而反洗工序只允许单台机组进行,一台机组反洗时,另一台必须等待。两台机组同时要求反洗时,1号机组优先。
(2) 为保证滤水工序的正常进行,在每台机组的管道上均安装了压差检测仪表,只要出现了“管压差高”信号,则应立即停止滤水工序,自动进入反洗工序。
(3) 为了增强系统的可靠性,将每台机组的磁滤器及各个电磁阀线圈的接通信号反馈到PLC的输入端,一旦某一输入信号不正常,要立即停止系统工作,这样可避免发生故障。
(4) 执行器输出故障检测及报警。
3、控制系统设计:
3.1硬件设计:
(1) 确定PLC的CPU型号和扩展模块型号:
下表为净水器的1号机组的输入和输出地址分配表:
1号机组的输入/输出地址分配表
因为1号机组和2号机组的工作原理相同,故净水系统总的输入点数为18点,总的输出点数为16点。为此选择西门子公司的S7-200系列的CPU224可编程控制器和S7-200的数字量扩展模块EM223,它们可以提供22点输入和18点输出。
(2) 压差检测仪表的选择:压差检测仪表的作用是检测磁滤器的入口和出口的压差,如果压差过高,表示磁滤器有堵塞故障,需要进入反洗工序。压差检测仪表应该具有设定压差、显示压差、压差信号输出功能。选择美国德威尔公司(dwyer)的3000IMR系列的Photohelic压力表/开关。
(3) 其它的输入和输出元件的选择比较容易,限于篇幅限制,从略。
3.2软件的设计:
根据净水机组的工艺要求和控制任务设计如下的顺序功能图:
图2、净水机组的控制系统顺序功能图
根据以上的顺序功能图,很快能写出梯形图,在此不详细列出梯形图。只列出梯形图设计的几个小技巧:
(1) PLC的其它编程元件的地址和作用在顺序功能图上有明确的标示,故没有列表。
(2) 为了避免系统工序的切换所造成的冲击,阀门和磁滤器的开启和关闭采用延时顺序动作。
(3) 1号机组和2号机组的反洗工序的调度算法:如果1号机组和2号机组同时进入反洗工序,由于2号机组延时0.1秒,故1号机组优先执行;如果不同时进入反洗工序,由于1号机组和2号机组反洗工序有互锁功能,则哪个机组先进入反洗工序,另一机组只能等待。
(4) 故障诊断子程序:
(4.1)故障诊断子程序的作用:
相对于PLC而言,外部输出器件如电磁阀、磁滤器容易出现故障。如果电磁阀和磁滤器出现故障而不能及时处理,容易造成系统工作不正常,甚至会损坏系统。处理的方法是:外部主要输出器件如果出现故障,必须停机并且报警,提醒工作人员维修。
(4.2)故障诊断子程序的设计:
本控制系统共有8个故障诊断子程序,它们的故障诊断算法都是类似的。具体的算法是:如果某个线圈通电,对应的常开辅助触点应该闭和;如果没有闭和,判断该器件损坏。如果某个线圈断电,对应的常闭触点应该闭和;如果没有闭和,判断该器件损坏。下面以故障诊断子程序1为例,谈谈故障诊断子程序的实现。
故障诊断子程序的梯形图见右图。它用顺序功能的逻辑语言解释如下:在M1.1步即{滤水工序}如果磁滤器或者出水阀或者进水阀没有打开、或者排污阀或者压缩空气阀打开了,则报警并且进入停机状态。
(5) 磁滤器的压差保护:如果磁滤器的入口和出口压差大于设定压差,则滤水工序无条件结束,顺序进入反洗工序。
4、本文作者的创新点:
利用PLC实现了污水净化处理系统的自动控制,详细介绍了污水净化处理控制系统的硬件设计和软件设计方法。软件设计给出了控制系统的顺序功能图,并且采用结构化程序设计方法。硬件设计采用了压差检测仪表,保证滤水工序的性能指标并且有防止滤水器堵塞的功能。由于采用PLC作为控制器,系统结构比传统控制系统结构简单,可靠性高,系统很少出故障;由于控制系统的控制算法由软件实现,易于系统升级,易于联网。为了解决1号机组和2号机组在反洗工序竞争的问题,采用了延时和互锁的算法。为了保证系统可靠地工作,设计了外部输出器件自诊断程序,能够判断外部执行器是否工作正常并且自动进入故障处理步骤。使系统有一定的自诊断智能,保证系统工作稳定、可靠。
一 四轴联动简易机械手的结构及动作过程
机械手结构如下图所示,有气控机械手(1)、XY轴丝杠组(2)、转盘机构(3)、旋转基座(4)等组成。
其运动控制方式为:(1)由伺服电机驱动可旋转角度为360度的气控机械手(有光电传感器确定起始0点);(2)由步进电机驱动丝杠组件使机械手沿X、Y轴移动(有x、y轴限位开关);(3)可回旋360度的转盘机构能带动机械手
及丝杠组自由旋转(其电气拖动部分由直流电动机、光电编码器、接近开关等组成);(4)旋转基座主要支撑以上3部分;(5)气控机械手的张合由气压控制(充气时机械手抓紧,放气时机械手松开)。
其工作过程为:当货物到达时,机械手系统开始动作;步进电机控制开始向下运动,同时另一路步进电机控制横轴开始向前运动;伺服电机驱动机械手旋转到达正好抓取货物的方位处,然后充气,机械手夹住货物。
步进电机驱动纵轴上升,另一个步进电机驱动横轴开始向前走;转盘直流电机转动使机械手整体运动,转到货物接收处;步进电机再次驱动纵轴下降,到达指定位置后,气阀放气,机械手松开货物;系统回位准备下一次动作。
二 控制器件选型
为达到jingque控制的目的,根据市场情况,对各种关键器件选型如下:
1. 步进电机及其驱动器
机械手纵轴(Y轴)和横轴(X轴)选用的是北京四通电机技术有限公司的42BYG250C型两相混合式步进电机,步距角为0.9度/1.8度,电流1.5A。M1是横轴电机,带动机械手机构伸、缩;M2是纵轴电机,带动机械手机构上升、下降。所选用的步进电机驱动器是SH-20403型,该驱动器采用10~40V直流供电,H桥双极恒相电流驱动,大3A的8种输出电流可选,大64细分的7种细分模式可选,输入信号光电隔离,标准单脉冲接口,有脱机保持功能,半密闭式机壳可适应更恶劣的工况环境,提供节能的自动半电流方式。驱动器内部的开关电源设计,保证了驱动器可适应较宽的电压范围,用户可根据各自情况在10~40VDC之间选择。一般来说较高的额定电源电压有利于提高电机的高速力矩,但却会加大驱动器的损耗和温升。本驱动器大输出电流值为3A/相(峰值),通过驱动器面板上六位拨码开关的第5、6、7三位可组合出8种状态,对应8种输出电流,从0.9A到3A以配合不同的电机使用。本驱动器可提供整步、改善半步、4细分、8细分、16细分、32细分和64细分7种运行模式,利用驱动器面板上六位拨码开关的第1、2、3三位可组合出不同的状态。
2. 伺服电机及其驱动器
机械手的旋转动作采用松下伺服电机A系列小惯量MSMA5AZA1G,其额定输出50W、100/200V共用,旋转编码器规格为增量式(脉冲数2500p/r、分辨率10000p/r、引出线11线);有油封,无制动器,轴采用键槽连接。该电机采用松下公司独特算法,使速度频率响应提高2倍,达到500Hz ;定位超调整定时间缩短为以往松下伺服电机产品V系列的1/4。具有共振抑制功能、控制功能、全闭环控制功能,可弥补机械的刚性不足,从而实现高速定位,也可通过外接高精度的光栅尺,构成全闭环控制,进一步提高系统精度。具有常规自动增益调整和实时自动增益调整两种自动增益调整方式,还配有RS-485、RS-232C 通信口,使上位控制器可同时控制多达16个轴。伺服电机驱动器为A系列MSDA5A3A1A,适用于小惯量电动机。
3. 直流电机
可回旋360度的转盘机构有直流无刷电机带动,系统选用的是北京和时利公司生产的57BL1010H1无刷直流电机,其调速范围宽、低速力矩大、运行平稳、低噪音、效率高。无刷直流电机驱动器使用北京和时利公司生产的BL-0408驱动器,其采用24~48V直流供电,有起停及转向控制、过流、过压及堵转保护,且有故障报警输出、外部模拟量调速、制动快速停机等特点。
4. 旋转编码器
在可回旋360度的转盘机构上,安装有OMRON公司生产的E6A2增量型旋转编码器,
5. PLC的选型
根据系统的设计要求,选用OMRON公司生产的CPM2A小型机。CPM2A在一个小巧的单元内综合有各种性能,包括同步脉冲控制、中断输入、脉冲输出、模拟量设定和时钟功能等。CPM2A的CPU单元又是一个独立单元,能处理广泛的机械控制应用问题,所以它是在设备内用作内装控制单元的理想产品。完整的通信功能保证了与个人计算机、其它OMRON PC和OMRON可编程终端的通信。这些通信能力使四轴联动简易机械手能方便的融合到工业控制系统中。
三 软件编程
1. 软件流程图
流程图是PLC程序设计的基础。只有设计出流程图,才可能顺利而便捷地编写出梯形图并写出语句表,终完成程序的设计。所以写出流程图非常关键也是程序设计首先要做的任务。依据四轴联动简易机械手的控制要求,绘制流程图如下图所示。
2. 程序部分
由于论文篇幅有限,这里只列出了开始两段程序,供读者参阅,见下图。
四 结束语
四轴联动简易机械手的各个动作和状态都由PLC控制,不仅能满足机械手的手动、半自动 、自动等操作方式所需的大量按扭、开关、位置检测点的要求,更可通过接口元器件与计算机组成PLC工业局域网,实现网络通信与网络控制。使四轴联动简易机械手能方便地嵌入到工业生产流水线中。
一、 概述
随着现代计算机和自动化控制技术的高速发展,自动化控制技术在人们的生活当中越来越重要,逐渐代替了原先人工复杂的操作和控制。这个舞台旋转灯光控制设备是集机电一体化控制为一体的自动化控制的设备。实现灯光可任意角度旋转控制,而且操作简单,易学易懂的自动化控制设备。
二、 功能
灯阵中所有灯具的安装初始角度为30�,每只单灯可以实现±150mm的左右调节,其为灯具出射主光轴与水平方向的夹角。灯阵支架具有整排的角度调节功能,所有的灯具要求同步调节,调节范围为10�-50�,调节精度±0.4�,角度旋转速度约为7�/min。要求角度旋转过程中灯阵机械结构不挡光。控制方式为远程控制。总的控制结构如下:
三、 系统组成
整个系统包括三个部分:驱动部分,机械部分,控制部分。
上位控制器控制11套驱动器,11套驱动器分别驱动11台步进电机 11台步进电机分别带动11台行星减速器,减速器后端各带动1台涡轮蜗杆减速器,每台涡轮蜗杆减速器分别带动一根24米长轴具转动的整体运动形式。见下图所示。
驱动部分:采用1台步进电机 1台行星减速器 1台双输出轴涡轮蜗杆减速器驱动1根24米长轴具的驱动方式,鉴于24米轴具具备过大的加工及安装难度,这里将24米长的轴具分成大致相等的两段,每端分别用涡轮蜗杆减速器的一个输出端驱动。见图1所示。
图1 驱动部分关系图
机械部分:采用1台双输出轴涡轮蜗杆减速器两端各 1个膜片式联轴器 1根6米长空心光轴 1个膜片式联轴器 1根6米长空心光轴的连接方式。整体的一根组合轴具的具体形式如图2所示。
图2 单根驱动端整体结构图
控制部分:采用一组集联PLC控制十套驱动装置的控制方式,同时采用人机界面形式,可以实时控制轴的动作及观察轴的状态。轴的末端装有角度编码器,实时测量轴具转过的角度,在人机界面上显示。总体的控制框架如下面框图3。
图3 控制过程框图
总结:月球上没有大气的削弱和保温作用,太阳辐射强,昼夜温差大,地球上难以模拟,这个灯阵就是为了模拟月球上太阳照射的平行光,让登月设备提前感受月球上太阳光的温度和亮度,大面积准直光照模拟是检验测量设备性能的关键之一。整个系统效果良好,操作简便,得到用户好评