浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
山东西门子(中国)授权总代理商

山东西门子(中国)授权总代理商

 西门子plc常见的通讯方法有RS485通讯,PPI通信,MPI通信,以太网通信,下面就对他们进行一一的介绍。
  1、RS485串口通信
  第三方设备大部分支持,西门子S7PLC可以通过选择自由口通信模式控制串口通信。简单的情况是只用发送指令(XMT)向打印机或者变频器等第三方设备发送信息。不管任何情况,都必须通过S7PLC编写程序实现。当选择了自由口模式,用户可以通过发送指令(XMT)、接收指令(RCV)、发送中断、接收中断来控制通信口的操作。
  2、PPI通信
  PPI协议是S7-200CPU基本的通信方式,通过原来自身的端口(PORT0或PORT1)就可以实现通信,是S7-200CPU默认的通信方式。PPI是一种主-从协议通信,主-从站在一个令牌环网中。在CPU内用户网络读写指令即可,也就是说网络读写指令是运行在PPI协议上的。因此PPI只在主站侧编写程序就可以了,从站的网络读写指令没有什么意义。
  3、MPI通信
  MPI通信是一种比较简单的通信方式,MPI网络通信的速率是19.2Kbit/s~12Mbit/s,MPI网络多支持连接32个节点,大通信距离为50M。通信距离远,还可以通过中继器扩展通信距离,但中继器也占用节点。MPI网络节点通常可以挂S7-200、人机介面、编程设备、智能型ET200S及RS485中继器等网络元器件。
  西门子plc与PLC之间的MPI通信一般有3种通信方式:
  1)全局数据包通信方式
  2)无组态连接通信方式
  3)组态连接通信方式
  4、PROFIBUS-DP通信
  PROFIBUS-DP现场总线是一种开放式现场总线系统,符合欧洲标准和。PROFIBUS-DP通信的结构非常精简,传输速度很高且稳定,非常适合PLC与现场分散的I/O设备之间的通信。
  5、以太网通信
  以太网的核心思想是使用共享的公共传输通道,这个思想早在1968年来源于厦威尔大学。1972年,Metcalfe和DavidBoggs(两个都是网络专家)设置了一套网络,这套网络把不同的ALTO计算机连接在一起,同时还连接了EARS激光打印机。这就是世界上个个人计算机局域网,这个网络在1973年5月22日运行。Metcalfe在运行这天写了一段备忘录,备忘录的意思是把该网络改名为以太网(Ethernet),其灵感来自于“电磁辐射是可以通过发光的以太来传播”这一想法。1979年,DEC、Intel和Xerox共同将网络标准化。
  1984年,出现了细电缆以太网产品,后来陆续出现了粗电缆、双绞线、CATV同轴电缆、光缆及多种媒体的混合以太网产品。以太网是目前世界上流行的拓朴标准之一,具有传传播速率高、网络资源丰富、系统功能强、安装简单和使用维护方便等很多优点。

满足中等控制规模的低成本解决方案
适用于中等性能范围的小型和中型系统
CPU 412-1满足中等控制规模的低成本解决方案。 可用于具有少量I/O配置的较小型系统中。 具有组合的MPI/DP接口,可在PROFIBUS DP网络中运行。
CPU 412-2 适用于中等性能范围的应用,它具有两个PROFIBUS DP主站系统。

CPU 412-1 和 CPU 412-2 的特点:
功能强大的处理器:
CPU 对每个二进制指令的执行时间可短到 0.75 µs。
CPU 412-1 :288 KB RAM (其中,程序和数据各使用 144 KB);
CPU 412-2:512 KB RAM (其中,程序和数据各使用 256 KB);
快速 RAM 用于执行部分用户程序
灵活扩展:
高 65536 个数字量以及 4096 个模拟量输入/输出。
MPI多点接口:
通过 MPI,可将多 32 个站连成简单网络,数据传输速率高达 12 Mbit/s。CPU 可与通讯总线(C 总线)和 MPI 的站之间建立多 16 个连接。
模式选择开关:
波动开关设计。
诊断缓冲区:
后的120个故障和中断事件保存在一个环形缓冲器中,用于进行诊断。可以对输入数目进行设定。
实时时钟:
日期和时间附加在 CPU 的诊断消息后面。
存储卡:
用于扩展内置的装载存储器。存储在装载存储器中的信息包括S7-400参数数据以及程序,因此需要2倍的存储空间。其结果是:
内置装载存储器的容量显著提高,因此,基本上不需要存储器卡。
CPU 412-2 还具有:
PROFIBUS-DP 接口和组合的MPI/DP 接口:
通过 PROFIBUS DP 主站接口,可以实现分布式自动化组态,从而提高了速度,便于使用。对用户来说,分布式I/O单元可作为一个集中式单元来处理(相同的组态、编址和编程).
组合式配置:
SIMATIC S5和SIMATIC S7可以作为PROFIBUS主站符合EN 50 170规范。


块保护:
通过密码来防止非法访问用户程序
集成的 HMI 服务:
用户只需为HMI设备定义数据源和目的地。 这些数据通过系统周期地以及自动地进行传输。
集成的通讯功能:
PG/OP 通讯
全局数据通讯
S7 标准通讯
S7 通讯
可编程属性
STEP 7 工具“Hardware Configuration”可用于对 S7-400(含 CPU)的性能和响应进行参数化,例如:

多点MPI接口:
定义节点地址
启动/循环行为
大循环时间和通讯负荷的规定
地址分配:
I/O 模块的编址
保持区域:
定义保持性位存储器、计数器、定时器和时钟存储器。
过程映像、局部数据的大小
诊断缓存区的长度
保护级:
设置访问程序和数据的权限
系统诊断:
确定诊断信息的处理方法和范围
实时中断:
设定周期
显示功能与信息功能
状态和故障指示灯:
LED 指示内部和外部故障和运行模式(如 RUN、STOP、重启、测试功能等)
测试功能:
编程器可用于显示程序执行过程中的信号状态,独立于用户程序而修改过程变量,读取堆栈存储器的内容,运行各个程序步,并禁止程序组件。
信息功能:
编程器可为用户提供存储器容量、CPU 的运行模式以及工作存储器及装载存储器的当前利用率等信息。

 

所有 S7-400 CPU 均具有两种类型的存储器。工作存储器的细分可将性能提高一倍。当一个标准处理器需要访问其 RAM 至少两次时,S7-400 专用处理器可在一个循环周期中同时访问代码存储器和数据存储器。因此,数据总线和代码总线也是独立的。工作存储器的容量取决于从精细分级的 CPU 系列中所选取的适合的 CPU。

对于小型和中等程序,集成式负载内存 (RAM) 就足够了。对于较大的程序,可通过插入内存卡来增加装载内存。插入式闪存卡可用于在不使用电池的情况下进行性存储。

块加密

相关功能 (FC) 和 功能块 (FB) 可以加密的方式存储于 CPU 以保护专门知识应用

 

SIMATIC S7-400 是一个通用的控制器:

具有高电磁兼容性和抗震性,可大限度地用于工业领域。

可带电连接、断开模块。

S7-400H

在自动化技术的许多领域中,有关可用性、自动化系统故障安全的要求一直在提高。在许多领域,设备停机可能造成极为高昂的费用。这里,只有冗余系统才能满足其可用性要求。

SIMATIC S7-400H 所具有的容错性可以满足这些要求。即使在一个或多个故障导致部分控制器失灵时也能继续运行。因此实现了其可用性,这样 SIMATIC S7-400H 及其适合用于以下应用领域:

控制器故障后,过程重新启动将会导致很高成本(通常在过程工业中)。

停机时间很宝贵的过程。

涉及贵重材料的过程(例如在制药工业中)。

无人监管的应用。

涉及减少维护人员的应用。

订货数据

S7-400H 部件订货数据可在“S7-400/S7-400H/S7-400F/FH”下的相应模块找到。 

S7-400F/FH

SIMATIC S7-400F/FH 故障安全自动化系统可使用在对安全要求较高的设备中。其可对立即停车过程进行控制,因此不会对人身、环境造成损害。S7-400F/FH 具有两种基本设计:

S7-400F:
故障安全自动化系统。如果在控制系统中发生故障,生产过程就转移到安全状态,并中断。

S7-400FH:
故障安全容错自动化系统。如果在控制系统中发生故障,冗余控制系统部分将发生作用,并继续控制生产过程。

使用附加标准模块可以创建一个全集成的控制系统,在非安全相关和安全相关任务共存工厂中使用。使用相同的标准工具对整个工厂进行组态和编程。

Design

SIMATIC S7-400有多个型号:

S7-400:
Power PLC,用于中、能应用,并采用模块化、免风扇设计。

S7-400H:
容错型自动化系统使用冗余设计,可以用于故障安全型应用。

S7-400F/FH:
故障安全自动化系统也使用冗余设计,同样具备容错能力。

S7-400

S7-400自动化系统采用模块化设计。它拥有丰富的模块,且这些模块均可以独立地组合使用。

一个系统包含下列组件:

电源模块(PS):
用于将120/230 V AC 或 24 V DC电源连接至SIMATIC S7-400。

CPU:
针对各种性能范围,都可以提供集成有PROFIBUS DP接口的不同CPU。视型号的不同,也可以为它们配供集成式PROFINET接口。使用PROFIBUS接口,多可以连接125个PROFIBUS DP从站。PROFINET接口多可以连接256个PROFINET IO设备。SIMATIC S7-400的所有CPU 可以处理极为大型的组态。此外,在单个中央控制器的多值计算模式下,多个CPU可以协同工作,据此,可以进一步提高系统的性能。这些CPU 处理速度极快,具备确定性的响应时间,因此,其机器周期时间极短。

信号模板(SM),用于数字量(DI/DO)和模拟量(AI/AO)的输入/输出。

用于连接总线和点对点连接的通讯处理器 (CP)。

功能模板(FM):
用于诸如计数、定位和凸轮控制等高要求任务的专家级系统。

根据要求,也可使用下列模块:

接口模板(IM):
用于连接中央控制器和扩展单元。SIMATIC S7-400的中央控制器工作时可支持多达21个扩展单元。

SIMATIC S5 模块:
在相关的SIMATIC S5扩展单元中可以寻址SIMATIC S5-115U/-135U/-155U的所有输入/输出模块。此外,在S5 EU 或者直接在CC(借助适配器套接件)中都有可能使用SIMATIC S5的特定IP和WF模块。

扩展

当用户需要在应用中使用一个以上的中央控制器时,可以对S7-400进行扩展:

多 21 个扩展单元:
中央控制器(CC)上多可以连接21个扩展单元(EU)。

接口模块(IM)的连接:
中央控制器(CC)和扩展单元(EU)是通过发送接口模块(IM)和接收接口模块(IM)完成连接的。发送接口模块插在中央控制器(CC)上,相应的接收接口模块则插在串行连接的扩展单元(EU)上。中央控制器(CC)上多可以插接6个发送接口模块(IM)(其中多有2个配5-V传输器),扩展单元(EU)上则只能插接1个接收接口模块(IM)。每个发送接口模块均有2个接口,每个接口均用于连接1条线路。发送接口模块的每个接口均可以连接至多4个扩展单元(无5-V传输器)或者至多1个扩展单元(配5-V传输器)。

电源模块的固定插槽:
在中央控制器(CC)和扩展单元(EU)的左侧必须始终连接电源模块。

C总线受限数据交换:
C总线数据交换仅用于中央控制器(CC)和6个扩展单元(EU)
(EU 1 - EU 6)之间。

中央扩展:
推荐用于直接安装在机床旁边的小型装置或者小型控制柜。也可以选择提供5-V电源。

中央控制器(CC)和后一个扩展单元(EU)之间的大单线距离:
使用5 V传输器时为1.5 m;无5-V传输器时为3 m。

用EU进行分布式扩展:
推荐用于占地面积较大、在同一个位置安装多个扩展单元(EU)的工厂。甚至于可以使用S7-400 EU或者SIMATIC S5 EU。

中央控制器(CC)和后一个扩展单元(EU)之间的大单线距离:
对于S7 EU为100 m,对于S5 EU为600 m。

注意 用于S5扩展单元至某个S7-400的分布式连接:
IM 463-2可以用于S7-400的中央控制器(CC),IM 314则用于S5-EU。以下S5 EU可连接S7-400:

EG 183U

EG 185U

EG 186 U

ER 701-2

ER 701-3

通过EU 200实现的分布式扩展:
推荐用于占地面积工厂。使用CPU的PROFIBUS DP接口,单条线路可以连接多达125个总线节点。中央控制器与后一个节点之间的单线大距离:23


展开全文
优质商家推荐 拨打电话