6ES7232-0HD22-0XA0正规授权
6ES7232-0HD22-0XA0正规授权
引言
为保证平台稳定,被调平台有五条支腿,分别用5个执行元件控制其高度,以调整平台的水平度;用2个水平敏感元件检测其水平度,2个水平敏感元件垂直安装,分别用于检测平台前后方向的水平度和检测平台左右方向的水平度。图1是被调平台与支腿和水平传感器安装示意图(图中未标出平台上的设备)。
图1 被调平台与支腿和水平传感器安装示意图
5个调平支腿高度及2个水平敏感元件的输出,构成了五输入二输出的多输入输出系统,每一调平支腿高度变动,都有可能影响平台的水平度,因此它是一个强耦合的系统。
2 完全解耦的控制方法
系统虽有5个输入,2个输出,但我们知道,三点决定平面,所以在调平控制量中有二个输入量是冗余量,只需选择平台重心在三支点构成的三角形内,控制这个三角形的三个支腿高度,即可实现调平;在调平结束后,再控制其余二个支腿着地即可。所以实际系统应是三输入二输出系统,经过分析可以得到水平敏感元件的输出α与β是三个调平支腿高A、B与C的函数:
α=f1(A,B,C)
β=f2(A,B,C)
平台调平后,应得到α≤δ,β≤δ。δ是一个允许的很小倾角。A、B、C与α、β之间是强耦合的。
应用理论和实验方法都可得出其传递函数,设平台输入与输出关系表示如下:
式中GNM是α、β对于A、B、C的传函;GNM中下标N=1、2代表水平敏感元件的输出α与β,M=1、2、3代表三支腿高A、B与C。设有一个预补偿矩阵Kp(s)使(2)式成立。
式中KPQ中下标Q=1、2代表预补偿函数的二个输入α与β,P=1、2、3代表补偿传函的三个输出A、B与C。若
则可实现完全解耦。为使完全解耦,必需求出k(S),并且按(4)式实时计算A、B和C,然后实施控制。
由(3)式解出k(S),代入(4)式并离散化(4)式,用计算机实时地计算出控制量A、B、C,就构成了快速自动调平系统。然而k(S)不容易显式解得,(4)式的实时计算量大;以及当用伺服系统控制调平支腿的高度时,少要有测量3个支腿高度的传感器和两个测量平台水平度的传感器,硬件电路相对复杂,开发时间长;这些因素都限制了完全解耦控制方法的使用。|
3 剔除冗余量的解耦控制方法
某些平台上的设备运行中不需实时调平,只要求开始工作前进行一次调平,对调平过程速度要求也不高。这种平台的调平方法,可用剔除冗余量的解耦控制方法;将调平过程分两步进行,首先调平某个倾角使之达到水平要求之后,将其锁定,然后再去调另外一个倾角。在步时,剔除了一个倾角及两个支腿的高,使控制系统变成了单入单出控制系统。第二步剔除已调平了的倾角及相应的已完成调平任务的两个支腿。这样第二步调平也变成了单入单出控制系统。这种做法是一种剔除冗余量的解耦控制方法。
具体调平过程叙述如下:首先选择平台重心所在三支腿构成的三角形中的三个支腿;在平台未调平前,三个支腿连结成的三角形中,必有一条边的倾角大,这条边是由高与低两支点的连线,与它平行的(或夹角小的)水平敏感元件的输出大,也即由此水平传感器测出的倾角大,以此水平敏感元件的输出作被控量,以高度低支腿的高为控制量,构成单入单出的闭环控制系统。这时,虽然调整低位置支腿高时,会同时影响两个倾角,但未被选用的水平传感器的倾角变化可在第二步时再调平,因此在步调平过程中,高和次高支腿高作为冗余量被暂时剔除了,较小的倾角的输出也作为冗余量被剔除了。步调平过程,直至此大倾角被调平为止。当此倾角调平后,以此水平线为轴,平台便成了“跷跷板”,在平台重心作用下,原次高支腿变成了新的低支腿。原倾角较小的传感器输出变成大。
第二步,也以此时倾角大的水平敏感元件的输出为被调量(另一水平敏感元件的输出已被调为零或一个允许的较小的倾角),以此时的低支腿高度为控制量,其余二个输入和一个输出作为冗余量被剔除,再次构成一个单入单出的单闭环系统;为防止第二步调平破坏步已调平得到的“跷跷板”的水平轴线,在第二步调平时,首先要收起低腿的对角支腿,使此支腿悬空;这样第二步调平过程就不会影响步调平的结果。当此时的大倾角的水平敏感元件输出变为零时,就表明平台已完全被调平了。后再将其余支腿放下着地使平台更稳定。
上述剔除冗余量的解耦控制方法算法简单,即当水平传感器输出超过要求时,接通低位置支腿的电磁阀,调此支腿的高,直至水平传感器输出满足要求止。控制算法中,确定电磁阀接通与否,只由水平传感器的输出决定,而不需要测出各调平支腿的高度,因此不需使用测量支腿高度的传感器。且控制算法中只有一些逻辑判断,无需处理大量的数椐,适合用PLC实现。
4 用PLC控制自动调平系统
用剔除冗余量的解耦控制方法的调平系统可用PLC实现。用PLC控制的自动调平控制系统主要包含:水平检测器与控制支腿高度的电磁阀与液压缸等组成。硬件框图如
图2 自动调平控制系统的硬件结构框图
下:
图2中PLC输出经驱动电路控制电磁阀,电磁阀控制液压缸,液压缸控制支腿高度,液压缸上的液压继电器用于测量支腿是否着地;因为当支腿着地后液压缸压力升高,液压继电器接通。水平传感器输出的水平倾角是模拟量,因此PLC除了要有用于控制液压缸的开关量输出模块,和用于接收液压继电器的开关量输入模块外,还要有模拟量输入模块。
某自动调平系统,自动调平工作过程如下:
(1) 选择大倾角(可能是“前后倾角”,也可能是“左右倾角”)方向首先调平。
(2) 判断大倾角方向上支腿的高低,将低端的调平支腿升高;直至在此方向达到调平精度。
(3) 进行另一方向的调节,升高较低一端的调平支腿,同时,收回此方向上较高一端的调平支腿;
(4) 达到两个调平方向的调平精度后,使辅助支腿着地、放稳;
(5) 调平工作结束。
图3是自动调平控制程序框图。图中DT9、DT11、DT13、DT15分别是除辅助支腿外的4个调平支腿的液压缸的4个电磁阀,图中“调左右倾角标志”和“调前后倾角标志”是PLC内部辅助继电器,程序检查此标志,当有标志时,会一直调整某个倾角,直至此倾角被调平为
图3 自动调平程序框图
止,故这一标志是实现解耦的关键。
编写程序时要注意到,PLC用户程序是周期执行的,因此PLC程序与计算机编程有很大不同。但本程序是用在S7-300 PLC中的,S7-300程序由“组织块”(OB1)和“功能”(FC1)等组成[2],本程序是一个“功能”。在条件满足时,“功能”程序将被反复执行,与计算机程5 结束语
本自动调平系统中,未使用高度传感器测各调平支腿的高度,系统成本低;所用的剔除冗余量的解耦控制方法,调平过程要分两步才能完成,速度比完全解耦的控制方法慢;但在某些设备中,对调平速度要求并不高,完全可以应用,是一个很好的控制方法。一些控制问题似难以用PLC进行控制,但只要在控制方法上想办法,改进控制方法后,用PLC也能胜任;本文提出的剔除冗余量的解耦控制方法有实现价值,可推广应用。本文设计的用PLC实现的自动调平系统能在很短的时间内完成,开发周期很短,可靠性很高。
1 引言
在电梯控制系统中,采用PLC构成的系统具有故障率低,可靠性高,维修方便等优点。在本实验室中就是采用OMRON的PLC作为电梯教学模型的控制装置。
电梯模型控制系统可分为逻辑控制部分和调速部分。逻辑部分选用高可靠性的PLC,利用软件逻辑控制,具有硬件简单、工作可靠等特点。调速部分的性能对电梯运行时乘客的舒适感有着重要影响,该教学模型调速部分是通过高性能的变频器控制电梯升降电机来实现的,变频器的频率输出和正反转则由PLC的输出来控制。
2 系统结构
整个硬件系统由一个8层电梯教学模型、一个与之相配套的专用实验操作箱、变频器、以及用作控制装置的PLC组成。系统的硬件构成如图1所示。
我们所用的电梯模型为8层,它由轿箱、开关门机构、升降电机、以及模型本身的控制系统组成。为了突出电梯运行控制这一重点,该电梯模型实验装置的楼层显示,电梯轿箱内楼层指示灯,均已由电梯模型实验箱完成,而各楼层电梯操作面板上的按钮指示灯则需由用户控制,这就是为了适合1台控制器同时控制多台电梯模型运行的情况。升降电机以给定的速度和转向运转。
图1 系统的硬件组成
此模型共需有34点指令信号和20点以上的控制输出信号,他们分别是:
(1) 每层楼上、下请求按钮指令信号,共14点(除去1楼下请求和8楼上请求)。
(2) 每层楼的楼层限位开关指令信号,共8点
(3) 轿箱内8层楼楼层按钮指令信号,共8点。
(4) 开、关门按钮指令信号,共2点。
(5) 上下请求指示灯信号,共14点(除去1楼下请求和8楼上请求)。
(6) 开、关门控制信号,共2点。
(7) 变频器正、反转信号,变频器频率选择信号,共4点。
其中(1)~(4)为输入信号,(5)~(7)是输出信号。
PLC根据现场信号的状态决定开门、关门,并决定发给调速系统(变频器)的速度选择信号。在进行PLC控制系统硬件设计时,首先是确定现场输入、输出信号的类型、作用和数量,再选择PLC的型号,在这里我们选择了日本OMRON公司C200Hα的PLC来对电梯教学模型进行控制。
3 电梯定向逻辑
电梯的定向是根据电梯的上行请求信号、下行请求信号、电梯轿箱内请求信号、电梯当前所处位置等信号来确定电梯继续运行的方向。电梯的定向是电梯控制中的重要逻辑。在以往电梯的定向逻辑中,一般都是将电梯各个层的上、下行请求信号、电梯轿箱内楼层请求信号、电梯当前楼层信号等综合到一条或几条语句中进行判断。这样一来,当楼层数目比较大时,每条语句的编程元件很多,不可避免的带来程序复杂,容易出错,调试麻烦,运行速度慢等问题。以下提出的用逻辑运算指令来进行电梯定向的方法可以比较好的解决该问题。
3.1 状态转换方式
电梯的方向只有上升、下降2个方向,但电梯也可能由于没有任何的上升或者下降请求信号而处于停止状态。在电梯的方向处理过程中,电梯只能在上升状态和停止状态或者下降状态与停止之间转换,例如当电梯由上升状态转为下降状态时必须先由上升状态转换为停止状态以后再由停止状态转为下降状态。这样的处理方式对电梯的运行是很有意义的,以往的电梯控制系统中,当电梯响应完某个方向上的所有信号后,若所有剩余的信号都是反方向的,电梯立刻改变方向,此时,在原方向前方若出现新的呼叫信号,电梯将不会立刻应答,只是记忆该呼叫信号,而去响应换向后的方向上的呼叫信号,这样既不符合电梯选层的优先原则,又不能有效的节约能源。采用图2所示的状态转换方式,电梯在响应完某个方向上的所有信号后并不是立刻反向,而是保持该状态等待一段时间后进入停止状态,然后再反向响应相反方向的呼叫信号。对保持时间进行合理的选择,完全可以做到既不会使得电梯的换向过程显得迟钝,又能有效的响应同方向的新呼叫信号。
图2 电梯的状态转换
从上面的分析可以看出,由于电梯的上升与下降状态之间需要通过“停止状态”该中间状态来转换,故在电梯的方向判断逻辑中需要考虑以下几种情况:
(1) 电梯处于上升状态
在该状态下,当前楼层的上面有上升请求,当前楼层的上面有下降请求或者电梯轿箱内请求在当前楼层的上面,3个条件有1个和多个成立时,电梯继续处于上升状态;当以上3种条件都不满足时,电梯经过一段定时时间后进入停止状态。
(2) 电梯处于下降状态
在当前楼层的下面有下降请求,当前楼层的下面有上升请求或者电梯轿箱内的请求在当前楼层的下面时,电梯继续处于下降状态;当以上3种条件都不满足时,电梯经过一段定时时间后进入停止状态。
(3) 电梯处于停止状态
在当前层之上有下降、上升的请求信号或者电梯轿箱内楼层请求信号在当前层的上面则置电梯为上升状态;相反,若在当前层之下有下降、上升的请求信号或者电梯轿箱内楼层请求信号在当前层的下面则置电梯为下降状态。
3.2 电梯定向逻辑
电梯定向逻辑在程序处理上使用OMRON的C系列的PLC所具有的逻辑运算功能可以大大简化程序的开发过程,并使程序的运行更加有效。将DM0000作为电梯上行的记忆信号。将它低8位中的一位用作表示该层有没有上行请求信号产生且被接纳。位代表电梯1楼上行请求信号,第二位代表电梯2楼的上行请求信号,依此类推。程序开始时首先将DM0000的低8位全部置为“0”,然后判断在每一层是否又有上行请求信号,如果有,就将该层对应的位置为“1”,否则就置该层对应的位为“0”。同理可以将电梯的下行信号记忆到DM0001的低8位中,将电梯当前的位置保存在DM0002的低8位中,将电梯的轿箱内的请求信号保存在DM0003的低8位中。
电梯处于上升状态时方向判断相对简单,只需将保存当前电梯位置DM0002与DM0000(记忆上行请求)、M0001(记忆下行请求)、DM0003(记忆轿箱内楼层请求)作比较就可以简单的判断在当前楼层之上有无上行请求、下行请求或者轿箱内楼层请求是否在当前层之上,从而决定电梯是否继续上升。
当电梯处于下降状态和停止状态时的方向判断则比较复杂一些,以下只以电梯处于下降状态时为例来进行说明。为了判断电梯在当前楼层以下是否有请求,在程序中用到了另外一个DM单元(DM0004)来保存电梯的当前位置,但该单元的存储方式则与DM0002完全不同。
电梯当前所处的楼层和DM0004的低8位数据的对应关系如附表。DM0004与DM0000作“与”操作,则可以屏蔽当前楼层以上的所有上行请求,而保留当前楼层以下的所有上行请求。 若“与”后的结果不为零,则表示在当前楼层的下面仍然有上行请求存在,若“与”后的结果为零,则表示当前楼层以下已经没有上行请求存在了,程序如图3所示。用相同的方法可以判断在当前楼层的下面是否存在下行请求和轿箱内的楼层请求信号。综合以上3个判断结果就可以判断电梯是否继续处于下降状态。若电梯继续下降的条件不成立,则电梯经过一段定时后进入停止状态。
附表 电梯当前所处楼层与DM0004低8位的对应关系电梯处于停止状态时的方向判断的程序编制方法与电梯处于下降时有很大的相视之处,限于文章的篇幅就不在详细叙述。
4 电梯调速
在电梯控制系统中,电梯速度的控制是一个重要而难以解决的问题。电梯的速度控制对乘坐者的舒适感影响很大,又影响电梯的jingque定位。在该电梯教学模型的控制系统中选用日本Panasonic交流马达变频调速器V700T750B1来控制电梯的速度。当PLC完成定向后,向变频器发出方向使能的速度信号,变频器依据设定的速度及加速度值启动电机,达到大速度后匀速运行。当电梯响应呼叫,到达目的层的减速点时,PLC切断高速度信号输出,此时变频器以设定的减速度将大速度减至爬行速度。在减速运行过程中,变频器的调速器能够自动计算出减速点到限位点之间的距离,并计算出优化曲线,从而能够按优化曲线运行。
图3 判断当前楼层下有无上行请求的程序、
使用PLC、变频器来控制电梯还有一种比较好的速度控制方法可以使用,就是利用PLC的D/A模块来实现。事先将数字化的理想速度曲线存入PLC寄存器,在电梯的运行过程中PLC通过查表找出对应的速度值写入D/A模块,再由D/A模块转换成模拟量后控制变频器的频率输出。
4 结束语
经过一段时间的实验证明,本系统能成功的对电梯完成自动控制,能准确地、及时地到达指定楼层,能按规定的频率曲线完成对电梯的速度控制。采用PLC控制电梯有明显的优越性,是一个改善电梯性能的有效方法。
1前言
在工业应用领域,大部分机械设备都采用先进、实用的控制产品对生产过程进行控制,以提高设备运行的可靠性和生产效率。但是,在农业应用领域,由于农机设备运行环境恶劣、操作人员技术水平偏低,绝大部分机械设备没有采用先进的控制产品,而是采用传统的手工操作和继电器控制。
中国是个农业大国,农机设备遍布大江南北。把性能稳定、质量可靠、功能强大的控制产品应用到市场巨大的农机设备中,对提高我国农业的自动化水平和农机企业的市场竞争力将会产生十分积极的影响。
本文介绍了和利时公司新一代小型一体化PLC在农用液压打包机上的应用,该应用在提高农机设备自动化方面取得了很好效果,具有很好的推广价值。
2系统概述
山东某液压机械制造有限公司是国内液压打包机械的企业,其生产的液压打包机行销海内外,得到用户的普遍好评。液压打包机广泛应用于棉纤维、亚麻、羊毛、纸边、服装、布匹、毛巾、麦草等松散物资的打包,为农用物质的仓储和运输提供了极大的方便。由于液压打包机一般应用在环境恶劣的室外或污染严重的生产现场,故对控制产品提出了较高要求。以前曾有自动化公司采用某国外品牌PLC对液压打包机的电气控制部分进行改造,但应用效果欠佳。我们对机器运行环境进行了现场考察和反复研究,充分考虑到了现场环境的恶劣性,在可靠性、稳定性等方面做了大量工作,提出了基于HOLLiAS-LEC G3小型一体化PLC的控制系统。实际运行效果表明,该控制方案达到了预期效果,大大提高了设备的自动化水平。
液压打包机控制系统由核心控制单元PLC和用于操作的人机界面组成,核心控制单元应用和利时公司的G3系列小型一体化PLC,人机界面采用深圳人机电子有限公司的新一代文本显示器MD204L。PLC包括1块24点CPU模块LM3107和1块8路继电器输出模块LM3222,输入、输出信号详见表1。
3系统功能
采用PLC控制的液压打包机可以实现自动脱包、自动提箱、自动转体、自动踩棉等功能,并能对生产过程进行实时监控,完成自动诊断、自动报警和数据上传等功能。为提高电气控制系统的可靠性,根据客户的实际需求,将经常出现故障的所有可以替换的开关按钮全部转移到人机界面上,包括油泵的启动/停止、踩箱的启动/停止、油缸的上升/下降/停止、提箱、开门、关门等操作按钮。另外,时间继电器的时间也在人机界面上设定,包括油泵电机启动延时继电器、踩箱电机避起延时继电器、踩箱电机断电延时继电器和油缸上升缓冲延时继电器。
液压打包机的控制部分包括油泵电机控制回路、踩箱电机控制回路、升降控制回路、提箱控制回路、预缷控制回路和开关门控制回路等,下面对各控制回路分别进行介绍。
油泵电机控制回路:通过文本显示器控制键盘的按键操作,按下“泵起”油泵电机的启动按钮,主接触器C1和Y接触器C2接通,同时油泵电机启动延时继电器,通过读取文本显示器上的时间值,并开始计时。时间到则Y接触器C2断开,同时△接触器C3接通,PLC的C2与C3两点互锁。按下“泵停”油泵电机的停止按钮,油泵电机正常停机。当电机发生过载或是有堵转情况发生时,主油泵热保护继电器RJ开关闭合,通过PLC程序控制主接触器C1立即断开,处于保护状态。故障排除后,重新启动、重新开机。当油缸超过上限或下限时,HC1和HC2都要在PLC程序控制中加以保护。通过设定油泵电机启动延时继电器的值可以任意改变Y—Δ启动转换的时间,保证佳转换状态。加上多重互锁和自锁,完成油泵电机的正常启动和运转,同时有指示灯显示电机的运转状态。
踩箱电机控制回路:通过文本显示器控制键盘的按键操作,按下“踩起”踩箱电机的启动按钮,踩箱过程开始,踩箱指示灯点亮,踩箱电机接触器C4接通,同时踩箱电机避起延时继电器读取文本显示器上的时间值,并开始计时。时间到,触发PLC内部中间继电器,踩箱结束,蜂鸣器H接通告知,同时踩箱电机断电延时继电器读取文本显示器上的时间值,并开始计时。时间到,循环结束,踩箱电机与蜂鸣器H停止复位。按下“踩停”踩箱电机的停止按钮,所有的时间继电器及中间继电器均复位,踩箱电机停止。我们可以对精度高达1ms的踩箱电机避起延时继电器和踩箱电机断电延时继电器任意调整,根据不同的工作状况选取不同值,极大地方便了用户操作,显著提高了生产效率。
上升、下降控制回路:上升与下降是两个相反的控制过程,由程序设计为互锁,以保证动作统一、安全。通过文本显示器控制键盘的按键操作,按下“上升”或“下降”按钮,箱体按程序动作,开始上升或下降,达到工艺要求。
提箱控制回路:系统提箱的控制必须保证在上升结束后进行,通过文本显示器控制键盘的按键操作,按下“提箱”按钮,提箱开始,当达到箱体上限位时,即为提箱结束。
预卸控制回路:按照工艺要求,预卸控制必须是在上升或提箱时间段以前进行。预卸全过程完全由PLC程序自动进行,油缸上升时即为预卸工序开始。读取文本显示器上的油缸上升缓冲延时继电器的时间设定值,同时开始计时,时间到预卸结束。
开门、关门控制回路:开门和关门是两个相反的控制过程,分别由文本显示器上的“开门”和“关门”操作按钮控制,内部中间继电器ZJ6和ZJ7互锁,分别完成开门和关门动作。
系统流程图如图1所示。
图1 系统流程图
人机界面上的主操作画面和时间设定画面如图2和图3所示。
图2 液压打包机操作画面
图3 液压打包机设定画面
4结束语
该控制系统已经成功应用在农用液压打包机上,降低了操作人员的工作强度,提高了设备运行效率和安全性,降低了能源消耗,提高了产品质量。从液压打包机在现场的运行情况来看,和利时的小型一体化PLC质量可靠、运行稳定、运行效果良好,能适应农机现场的恶劣环境,在提高农机设备自动化方面取得了很好效果,具有很好的推广价值
- 西门子S7-1200 SB1232,模拟量信号板模块6ES7232-4HA30-0XB0
- 西门子S7-1200 SM1232 模拟量输出模块6ES7232-4HD32-0XB0
- 西门子S7-1200 SM1232 模拟量输出模块 6ES7232-4HB32-0XB0
- 6ES7232-OHB22-0XA8西门子模块
- 6ES7232-4HD32-0XB0 西门子可编程控制器PLC拓展模块
- 西门子CPU控制器6ES7232-0HD22-0XA0
- 西门子CPU控制器6ES7232-0HB22-0XA8
- 西门子6ES7232-4HB32-0XB0 北京西门子代理价格
- 西门子SIMATIC S7-200CN EM232模拟输出模块6ES7232-0HB22-0XA8
- 西门子6ES7232-4HD32-0XB0 一级代理商 现货