西门子6GK7243-1EX01-0XE0当天发货
西门子6GK7243-1EX01-0XE0当天发货
1.应用背景
在冶金,化工,电力,制药等许多大型工程中,空压站建设是一项重要的辅助工程。空压站的主设备为空气压缩机,空气干燥器,配套过滤器,储气罐,连接管道和阀门等组成一供气系统。大型空压站通常拥有多套设备,以保证不同负荷的需求。确保合格的供气品质,满足稳定的气源压力,供气liuliang的自动调节等是空压站自动化的基本任务。随着自动化水平的不断tigao,建设无人值守空压站的要求已是一个发展趋势。
本案例应用于上海宝钢集团上钢一厂连铸连轧项目的大型空压站。该站有6台每分钟供气200立方的螺杆式空压机,6台200立方处理量的冷冻式干燥器,另有两台80立方处理量的吸附式干燥器,采用母管制连接方式生产压缩空气。用户要求:
1)每台设备应有自动控制和联锁保护装置,并配有触摸屏供现场观察各工艺参数和设备状态,可手动/自动切换操作及紧急停机;
2)现场控制室应有计算机操作站,通过建立设备网络,监控整个生产过程;
3)空压房的操作站应与厂区控制中心联网,由控制中心的控制器实时远程监控,实现空压站无人值守。
2.系统构成
2.1.控制网络结构的确立
由于控制中心选用AB公司的PLC构筑自控系统,并指定采用DH+网络实施远程联网。为保持一致性,空压站自控设备选用AB公司的小型PLC——SLC-500系列可编程控制器,其带有DH+网络接口,支持DH+和DH-485网络协议。原设计推荐为单一DH+网络结构,后仔细分析了生产实际情况和各设备的特点,以及可能存在的问题,综合各方面因素后确立了分级控制网络的实施方案,如图1所示。其基本理由是:
1)技术性考虑,单一结构网络在节点数量较大时安全性不够理想。因为各设备控制器均挂在同一网络上,任何一台出现通信故障都可能影响整个网络,严重时会引起网络瘫痪,无法实现远程监控。虽然本案例的设备总数并不算很多,但考虑到对无人值守的高标准要求,将设备网分为上层DH+和下层DH-485两级网络,以达到分散危险,tigao网络有效性和可靠性的目的。
2)经济性考虑,满足基本要求的前提下,采用低成本的微型PLC替代。干燥器设备的生产工艺相对较简单,控制点数不到10点,模拟量信号输入点数也不多,动态响应的时间常数相对较大,微型PLC——Micrologix1200可以满足要求。其成本可降低一半,每套约节省2万元,总计可达15万。
分级网络的特点:
a)远程控制网——DH+网络(增强型数据高速公路)连接控制中心控制器与空压站主控制器0#SLC,传输空压站系统的重要信息参数及各设备运行状态,并实现控制中心的远程控制操作。
b)上层设备网——DH+网络,连接现场主控制器0#SLC,1#-6#空压机子站SLC,以及作为通信控制器的7#SLC。0#SLC除负责与远程控制网连接外,还承担所有子站的信息集成和控制信号的传递。
c)下层设备网——采用DH-485网络,7#SLC通信控制器作为上下网的联接器集成各干燥器控制子站1#-8#M1200的数据信息,并传递远程控制信号。M1200和触摸屏均通过通信模块NET-AIC挂接到DH-485网上。
DH+网络为AB公司推出的工业局域网之一,它是早为可编程序控制器提供远程编程支持的控制网络。它可以在可编程序控制器(PLC-5、PLC-3、SLC5/04)、操作员界面系统、个人计算机、主计算机、数字控制设备、可编程的具有RS-232-C/RS-422接口的设备之间提供点对点通信。一个DH+网络多可以连接99个DH+链路,每个DH+链路多可以连接64个节点(智能化设备)。它采用双绞线或屏蔽同轴电缆连接,每个链路的传输速率为57.6KBps,115.2KBps和230.4KBps三种可选,传输距离可达10,000英尺(3048米)。DH+网络支持从远程链路进行组态、编程以及故障查询等。
DH-485是一种对信息传送有时间苛刻要求的、高速确定性的工业局域网络,主要用于车间级各种设备之间的数据传递;具有多主功能,在令牌传送协议下工作,网络的大长度为1219m。DH-485能够连接多达32个节点的设备,包括SLC500和Micrologix1200可编程控制器、操作员终端和个人计算机等。其大传输速率可达19.2KBps。
图1分级控制网络示意图
2.2硬件配置
现场控制室——操作站计算机PC,主控制器0#SLC(SLC-504)带有标准RS-232C/DH+/8针圆形接口,共3个网络接口。配置模拟量输入/输出模块,开关量输入/输出模块,共计128点,所有开关量输出均采用继电器隔离。0#SLC控制各设备子站以外的系统测点和阀门。
空压机子站——1#-6#SLC可编程控制器(SLC-504),分别配有包括模拟量输入在内的64点I/O模块;通过DH+接口连接到上层设备网。
干燥器子站——1#-8#M1200微型可编程控制器(Micrologix1200自带24点I/O),配接12点模拟量输入I/O模块,通过NET-AIC通信模块接入DH-485下层设备网。PV-500彩色触摸屏也由通信模块的9针插头连接到DH-485网。
2.3.软件组成和工作程序
网络连接软件RSLinx它在车间级设备与各种应用软件之间提供通讯功能,它可组态网络的通讯协议(即选择PLC控制网络的协议,如DH-485协议,DH+协议),传输波特率,驱动程序等,完成网络的初始化和令牌管理。
编程软件RSLogix500可使用户在DH-485网或DH+网上对控制器(SLC500、Micrologix1200)进行编程,网络上的任一个工业终端可以用来对网络上的所有控制器编程。用户既可以将程序下载到有关设备中,又可以从设备上载已有的程序,调试程序,监视设备的运行。
工作站组态软件RSView32设在现场控制室的操作站用来监视和操作整个生产过程,为控制系统提供通讯、显示及报表管理等功能,
各设备控制器自成一子系统,其应用程序功能包括:信息采集,设备控制,故障报警,联锁保护,以及数据处理和通信传输。
通信传输工作程序如图2所示。在本案例中,从控制中心控制器经现场控制室操作站到7#SLC通信控制器,均采用自上而下的方式读/写目标控制器的数据区数据,由数据传送指令完成数据通信,实现信息集成和远程控制。
图2通信传输工作流程示意图
3.难点问题和解决方法
整个控制系统随同设备于2003年7月初步完成安装调试工作,进入试生产。2004年2月正式投产,满负荷运行,情况良好,达到设计的预期目标。期间出现过的主要问题为:
1)通信故障引起远程监控失效两次(上层设备网)。分析可能的原因,通信电缆使用了带屏蔽的普通信号电缆而非控制设备规范要求的双绞线屏蔽电缆,易受现场干扰;软件方面对通信异常未设置必要的处理程序。
解决方法——将原来115.2KBps通信传输速率降低到57.6KBps,以tigao数据传输的可靠性;软件方面做了相应的改动,此后未再出现过类似通信故障。
2)通信传输延时,实时控制滞后(下层设备网)。经分析获悉,DH-485令牌总线网络结构的工作模式使得7#SLC通信控制器需要多个循环才能对下层网各设备控制器扫描一遍,加之网络传输速率相对较低,在传输数据量较大时,出现控制延时达7-8秒。
解决方法——由于系统结构已定,硬件无法改变,所以在软件方面加以改进。数据传输速率tigao到上限19.2KBps;再修改软件程序,采用控制操作指令优先的策略,控制滞后的操作可得到改善。
4.小结
·控制系统网络化可有效实现空压站远程监控,无人值守。本案例的成功实施是一个很好的示例。
·分级控制网络的实施,分散了故障危险,可tigao网络运行的有效性和可靠性。
·综合分析生产实际情况,以及全面评价控制设备的各项性能指标,有助于制订经济性的控制方案,从而降低投资成本,tigao经济效益。
改进方向:
1)引入故障检测和故障诊断的处理程序,系统的智能化程度可得到tigao,有利于进一步改善自控系统的有效性和可靠性。
2)优化调度策略,软件联锁保护等自动控制功能模式的应用,有望将自动化水平tisheng到更高层次,并由此获得更大的效益。
1 引言
切纸机械是印刷和包装行业常用的设备之一。切纸机完成的基本动作是把待裁切的材料送到指定位置,然后进行裁切。其控制的核心是一个单轴定位控制。我公司引进欧洲一家公司的两台切纸设备,其推进定位系统的实现是利用单片机控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,断开进给电机的接触器,同时电磁离合制动器的离合分离,刹车制动推进系统的惯性,从而实现jingque定位。由于设备的单片机控制系统老化,造成定位不准,切纸动作紊乱,不能正常生产。但此控制系统是早期产品,没有合适配件可替换,只能采取改造这一途径。目前国内进行切纸设备进给定位系统改造主要有两种方式,一是利用单片机结合变频器实现,一是利用单片机结合伺服系统实现,不过此两种改造方案成本都在两万元以上。并且单片机系统是由开发公司设计,技术保守,一旦出现故障只能交还原公司维修或更换,维修周期长且成本高,不利于改造后设备的维护和使用。我们结合自己设备的特点提出了新的改造方案,就是用plc的高速计数器功能结合变频器的多段速功能实现定位控制,并利用hmi(人机界面humanmachineinterface)进行裁切参数设定和完成手动操控。
2 改造的可行性分析
现在的大多plc都具有高速计数器功能,不需增加特殊功能单元就可以处理频率高达几十或上百khz的脉冲信号。切纸机对进给系统的精度和响应速度要求不是很高,可以通过对切纸机进给系统相关参数的计算,合理的选用编码器,让脉冲频率即能在plc处理的范围内又可以满足进给的精度要求。在进给过程中,plc对所接收的脉冲数与设定数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而减小系统惯性,达到jingque定位的目的。另外当今变频器技术取得了长足的发展,使电机在低速时的转矩大幅度tisheng,从而也保证了进给定位时低速推进的可行性。
3 主要控制部件的选取
3.1plc的选取
设备需要的输入输出信号如表1所示。
表1plc输入输出分配表 针对这些必需的输入点数,选用了fx1s-30mr的plc,因为选用了人机界面,其它一些手动动作,如前进、后退、换刀等都通过人机界面实现,不需占用plc输入点,从而为选用低价位的fx1s系列plc成为可能,因为fx1s系列plc输入点多只有16点。另外此系列plc的高速计数器具有处理频率高达60千赫的脉冲的能力,足可以满足切纸机对精度的要求。
3.2编码器的选取
编码器的选取要符合两个方面,一是plc接收的高脉冲频率,二是进给的精度。我们选用的是编码器分辨率是500p/r(每转每相输出500个脉冲)的。通过验正可以知道此分辨率可以满足上面两个条件。验证所需的参数:电机高转速是1500转/分(25转/秒)、进给丝杆的导程是10mm/转。验证如下:
本系统脉冲高频率=25转/秒×500个/转×2(a/b两相)=25khz
理论进给分辨率=10mm/500=0.02mm
同时由上面的数据知道进给系统每走1mm编码器发出50(此数据很重要,在plc程序的数据处理中要用到)个脉冲信号。由于此工程中对编码器的a/b相脉冲进行了分别计数,使用了两个高速计数器,且在程序中应用了高速定位指令,则此plc可处理的高脉冲频率为30千赫,因此满足了个条件;我们的切纸机的载切精度要求是0.2mm,可知理论精度完全满足此要求。
3.3变频器和hmi的选取
这两个部件我们都选用了三菱公司的产品,分别是fr-e540-0.75k-ch和f920got-bbd-k-c。f920got是带按键型的hmi,它的使用和编程非常简单方便。它具有以下特点:(1)可以方便的实现和plc的数据交换;(2)通过本身自带的6个功能按键开关,可以控制plc内部的软继电器,从而可以减少plc输入点的使用;(3)具有两个通讯口,一个rs232c(用于和个人电脑通讯)和一个rs422(用于和plc通讯),利用电脑和f920got相连后不仅可以对hmi进行程序的读取和上传,还可以直接对plc的程序进行上传下载、调整和监控。
4 plc和hmi程序的设计
此工程中程序的难点主要在于数据的处理上。在切纸机工作过程中除手动让进给定位机构前进后退外,还要实现等分裁切功能和指定具体位置定位功能,并且hmi上还要即时显示定位机构的当前位置。我们为了简化程序中的计算,采用了两个高速计数器c235和c236。c236通过计算前进后退的脉冲数,再进行换算后用于显示进给机构的当前位置;c235用于进行jingque定位。定位过程是这样的,每次进给机构需要定位工作时,通过计算把需要的脉冲数送到c235,不论进给机构前进还是后退c235进行减计数,同时对c235中的数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而达到jingque定位。因为任何系统都有惯性和时间上的迟滞,所以变频器停止输出的时间并不是c235中的计数值减小到0时,而是让c235和一个数据寄存器d130比较,当c235中的值减小到d130中的设定值时plc控制变频器停止输出。d130的值可通过人机界面进行修改和设定,在调试时通过修改这个值,以达到定位准确的目的。
1)显示定位机构当前位置的程序
2)实现定位控制的程序段
3)参数设定时的小数点位问题。实际工作中在设定位置时要jingque到0.1mm。这个问题在一些单片机系统中常会遇到,常见的处理办法是加大一个数量级,就是设定数据时,在人机界面上用1代替0.1mm,10代替1mm。不过我们在处理此问题时通过hmi中对数据的设置和plc的程序编写达到了所见即所得的效果。hmi中主要是对数值的格式要设定好。hmi中的设置画面如图1所示。例如等分裁切10.5mm的纸,就可以在hmi上设定为10.5,而不是像公司的类似其它设备上要设为105,但plc的寄存器d128的内容是105而不是10.5,这样在计算需要的脉冲数时就要用下面一条命令:muld128k5d10(此命令中尽管编程时d11不出现但实际上寄存器d11被占用,不能再应用于其它地方,否则会出现问题。) 而不是用:muld128k50d10。
4)编程中其它应注意的问题
●双线圈问题。本工程中利用条件跳转和步进指令避免了双线圈问题。
●误差信号问题。编码器是一种比较精密的光电产品,受振动时不可避免的会出现误差信号,而切纸机在执行裁切动作时会造成很大振动,如果忽视这个现象,定位精度和执行机构当前位置的显示都会不准确。本工程中处理方法参见上面例子程序图1,只有y3、y4接通,即只有进给机构前进和后退时才让c236进行计数,这样就屏蔽了裁切时震动造成的误信号。
5 变频器的参数设置
设定的变频器的主要参数见表2。在调试过程中为了达到定位速度和精度的完美结合,应对三段速设定值,加减速时间和hmi中d130、d200和d202的数值进行相应调整。
表2变频器主要参数设置一览表
6 结束语
通过改造过程,完全恢复了我们切纸机的功能,试用三个月以来运行非常稳定。由这个应用实例可以看出结合plc的高速计数器功能,合理的进行应用,在一定场合可以取代高成本的定位控制系统,实现控制系统优的性价比,并且由于选用通用开放的plc—变频器集成方案,为企业后期自主设备管理带来长远的效益。
引言
本机是将兔毛原料未经改性处理,直接进行开松、梳理,制成一定支数的毛条,具备抱合力大和加有真捻等特点,并由纺纱机(FNT-28型兔毛纺纱机,专利号:9424N73-4)纺制成各种规格支数的细纱。本机是国家发明专利产品(专利号:93106597-6),八五国家星火项目,同时又被国家科委列为九五项目。
本机电气部分采用继电器控制系统,动力驱动由三相异步电动机来完成。该控制系统有三点不足:
(1)继电器线路接线复杂,功能单一。继电器接触控制系统的逻辑部分由许多继电器;按某一固定形式连接而成,若工艺流程发生改变,则需要改变继电器控制系统的接线,才能满足新的工艺流程要求。工人实际操作和维修复杂,易出故障;
(2)可靠性不高,控制精度不够,这就势必影响了出条支数、出条定重;
(3)继电器控制柜的体积大,占用了较大的生产空间,影响了工人的操作。
因此有必要对本机的控制系统进行改造。近年来,随着
科学技术的飞速发展,步进、伺服电机的应用越来越广泛,其功能多样性和产品可靠性日臻完善,正在逐步取代原来的普通电机。而且随着可编程控制器技术的日益成熟,将二者完整地结合起来,完成对各种复杂运动的自动控制,实行机电一体化,正在成为一种趋势。
2 控制方案的确定
由于步进电机可直接用数字信号控制,无需反馈可开环工作,无累积定位误差,控制精度高,因此被广泛用于数字控制系统和计算机控制系统。而可编程序控制器(PLC)是一种适于工业现场控制的,由单片计算机(CPU)、外围大规模集成电路(LSI)、系统软件及I/0接口等构成的新型控制器,用户通过软件设计,可实现以往难以实现的各种复杂逻辑控制。与通用PC机或单片机构成的系统相比,PLC具有可靠、抗扰能力强、编程简单等优点,已成为替代传统继电接触器控制线路的升级换代产品。因此,本系统采用可编程控制器(PLC)为控制核心,步进电动机为执行元件、红外光电传感器为检测元件的新型系统,实现了兔毛梳理机的计算机数字控制。其组成原理如图所示:
图2控制系统原理图
3 控制系统的实现
3.1系统组成
PLC选用日本松下FP0PLC,共8点输入(X0~X7),8点输出(Y0~Y7),主要控制主电机Motor1和毛斗步进电机Motor2的工作状态和转速;步进电机选用两相混合步进电动机,步距角1.8°/STEP,用于驱动主机和毛斗;步进电机驱动器选用DMD402,电源电压DC14V~40V,其作用是根据PLC的控制指令对电机实现脉冲和方向控制。
3.2系统工作原理
FP0系列PLC除具有一般逻辑控制与运算功能外,还具有高速计数输入(大10kHz)、PLS脉冲直接输出、SPD位置控制、PWM脉冲输出等特殊处理功能,用于步进电机的速度控制或位置按制十分方便。
在图3所示系统中:PLC输出口Y0、Y1以脉冲速率方式输入步进电机驱动器的Pulsebbbbb端,控制梳理机主电机和毛斗电机转速和位移。PLC输出口Y2、Y3以方向信号输入到驱动器Directionalbbbbb端,控制梳理机电机的转向。输出点Y4、Y5是步进电机复位信号RST,每次开机对步进电机驱动器清零。PLC输入点X0以梳理机喂入量斗处的红外传感器作为输入信号,可调节喂入量斗的喂毛量。X1、X2作为步进电机的启动信号,X3作为步进电机复位信号。X4以为位置传感器作为输入信号,检测梳理机是否复位。可以利用当需要手动操作时,可通过PLC的手动输入信号X5、X6,以点动方式按制电机的正转或反转。控制关系为:X5=ON,电机正转;X6=ON,电机反转。
图3梳理机控制工作原理图
4 控制系统软件设计
图4是根据前述梳理机的电气控制原理,结合PLC的程序设计方法和生产工艺要求,设计的控制软件程序流程图。
图4梳理机运行程序图
利用FP0PLC提供的高速脉冲处理指令、逻辑控制指令、算数运算指令及一些特殊功能指令,可较方便的实现对步进电机的升/降速、恒速及正/反转的运行控制,尤其用PLS-脉冲输出指令和SPD-位置控制指令,可使步进电机达到不失步的升/降速与恒速运行。
5 结束语
以PLC和步进电机为主构成的数字式兔毛梳理机控制系统的研制成功,为兔毛梳理机在生产与应用环节的工艺参数的调整,提供了保障。采用本控制系统的兔毛梳理机各项指标:适纺原料范围:兔毛(高比例);条干重量不匀率:1.5%;生条可纺支数:8~60公支;脱毛量:1~mg/100cm2;兔毛制成率≥95%;出条定重:0.125~1g/m;台时产量:0.3~2kg/h。此外,系统具有控制精度高、操作简单、运行平稳、无噪音等优点。