全国服务热线 15221406036

西门子模块6ES7214-2AS23-0XB8物优价廉

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子模块6ES7214-2AS23-0XB8物优价廉

现今,市场上有多种不同的接口提供相同介质上的数据及电能传输。我们审视各种技术的优缺点时,就可以清楚发现以太网供电(PoE)和电力线载波(PLC)技术匹配良好;结合这两者会添增价值。电力线调制解调器利用已有电力线路的优势,将电力线用作通信通道,而PoE作互补技术,在以太网数据线缆上传输电能。在数据和电力网络中应用这两种技术得心应手,可更节省成本、更灵活及更优化。为这种通信网络的各个部分选择恰当的技术,可以受益匪浅。

结合电能及数据传输技术:PoE、PLC及USB

PoE技术为传统以太网增加了电能传输能力。这种技术使用已有或新的数据线缆基础设施,将电能传输至以太网线缆上的设备。以太网线缆可以是CAT5、CAT5e或CAT6双绞线,每种双绞线都有不同的环路阻抗,提供略有差异的性能。其中,100米长CAT5双绞线的环路阻抗为20 Ω,而CAT5e或CAT6为12.5 Ω。由于数据线缆未受保护,且这技术使用直流(DC)电压,为安全起见,线缆上的高电压电平被限制在57 V。这些线缆阻抗和电压电平约束为系统、特别是距离较远的系统的能效造成了一些限制。

根据IEEE802.3af标准,大功率为13 W时线缆上的压降为7 V,故总损耗为7 V×350 mA=2.45 W。对于IEEE802.3at草案(D3.0)标准,25.5 W大功率时的压降为9 V,相应地总损耗为9 V×600 mA=5.4 W。另一方面,这技术支持线缆长度达100米的千兆位以太网(GbE),用于电能传输时会带来边际递增成本(marginal incremental cost)。

在频谱的另一方面,PLC技术利用已有电力线路的优势,以高于电力信号的频率传输数据。现今PLC技术有两种流行应用,种应用是小型办公室/家庭办公室(SOHO)网络,利用家中或办公室中现有的电力网络来传输数据。第二种是在工业应用,如电能计量,以电力线缆来远程提供电表输出数据。

但PLC并不是没有自身的问题。主要的问题集中在电力线路本质上是极嘈杂环境的事实;设备每次开启或关闭时,电力线路上就会产生“爆音(Pop)”或“嘀哒(Click)”声。系统的设计必须处理这些自然信号干扰,并避免它们。这尤其适用于低误差率及线缆长度可能很长的工业环境。这类配置中通常使用频移键控(FSK)调制技术。这种方法确保高质量的数据,但不支持太高的数据率。SOHO应用中的线缆距离通常较短,但需要更高的数据率,故使用正交频分复用(OFDM)调制技术。这是一种支持较高数据率的多载波方案。

在相同介质上提供电能及数据的第三种技术是USB。与PoE和PLC相比,USB接口常用于个人电脑(PC)外设。这种接口类型的一项不足是它只能为应用提供有限的功率。它的另一项不足是传输距离,因为它只能支持电源和应用之间大约4米的距离。这两项不足排除了USB众多潜在的家庭及工业应用。

图1对比了所有这三种技术。PLC在长距离传输电能和数据方面表现明显更胜一筹。但另一方面,由于在电力信号之上调制数据信号需要复杂的电子电路,PLC解决方案成本高昂。因此,这种技术并不能高性价比地用于单个设备,而是更适合用于交换机和集线器。

newmaker.com
图1:USB、PoE、PLC三种技术的性能对比

这三种技术的潜在威胁是无线局域网(WLAN)技术(如WiFi、WiMAX、蓝牙),因为WLAN技术还减少了线缆数量,并能桥接长距离。在建筑物中使用无线技术的一项争议出现在混凝土结构中嵌入的金属材料的屏蔽效应,可能阻挡无线信号。因此,通常需要安装数个接入点来确保提供良好的信号覆盖。其次,要构建无线桥接环境,每种电器或设备中必须都有无线接入点,才能接收信号。与传统电源转换器结合在一起的无线接入点相较于支持PoE的标准以太网而言,存在成本劣势。对于工业环境而言,无线技术局限于用在不安全、非关键的应用,因为无线信号始终面对着被屏蔽或被意外事故干扰的风险。

恰当地平衡利用PoE和PLC技术能够带来优势

在适合的地方利用PoE及PLC技术,就能够优化系统的成本及能效。如果我们考虑机顶盒(STB)等潜在的家庭应用,机顶盒总是放置在有电源插座的位置。

图2阐释了一种潜在的机顶盒家庭应用。网络通过非对称数字用户线路(ADSL)线路、光学光网络终端(ONT)或同轴网络进入家中。数据通过电力网络传输至家中的各个电源插口。在有机顶盒、语音IP电话(VoIP)或台式PC等高带宽应用连接至电源插口的各个房间,电力载波上的数据会可能传输至以太网线缆。为了支持这种传输,需要在电源插口上安装特别的设备。这设备包含PLC调制解调器,并结合了支持PoE的以太网交换机。目前市场上有售结合PLC调制解调器及以太网交换机的设备。然而,这些设备中的大多数仍然不含PoE。这表示每个设备需要不同的电源转换器来从支持PLC的交换机接收数据。下一步,PoE将增添至这些设备之中,可进一步优化及节省成本。

newmaker.com
图2: 一种潜在的机顶盒家庭应用示意图

用户采用这种建议配置,将能够选择从哪个电源插口“接收(tap)”数据,选择方式就是在电源插口插入灵活的以太网交换机插头。支持PoE的线缆从各个以太网交换机插孔(jack)提供数据及电能给家用电器或设备。其结果是免除了应用的电源适配器,线缆用量减少至1条,并优化系统能效。此外,这种方法尽量利用已有基础设备的优势,因此PoE线缆的长度相对较长,减少了线缆损耗。

在以太网日趋普及地用作通信接口的工业环境中能够使用类似配置。以太网用于工业环境中的仪表、传感器、人机接口(HMI)、逻辑控制器及输入输出(IO)模块。结合PLC技术,数据能传送更远距离。

那么为什么结合这两种技术有如此优势呢?可能提出的一个问题是为什么PLC调制解调器不移至机顶盒内部,从而无需支持PoE的以太网和PLC电源插口?答案是PLC调制解调器是一种昂贵设备,相较于PoE接口而言有成本劣势。这表示在每个家用电器中集成PLC调制解调器在经济上并不合算。

PoE还能够替代传统电源的DC/DC控制器,提供额外的成本及设计简化优势。另外一种选择是在不采用中间(intermediate) PLC技术,考虑在所有家庭提供PoE。对于较大的办公室而言,100米的线缆长度限制只是表示需要中间集线器来桥接更长距离。当然,每栋建筑物的完整距离范围内都已存在电力线缆。在电力线缆上传输数据,无需集线器就能够桥接覆盖到这些建筑物内的长传输距离。第二,存在敷设线缆及线缆本身成本的问题。结合使用PLC及PoE,就能够避免在建筑物范围内敷设CAT5e线缆的投资。

结合这两种技术的另一项优势是PoE被推至网络的极边缘。PoE仅用于后的数米,因此大幅缩短了线缆长度。反过来这也使线缆中的电能损耗极低。较短的线缆还适合于更高功率的应用。设计人员能够考虑当前由IEEE802.3at标准草案建议的高于25.5 W功率电平的专有解决方案。

安森美半导体目前提供两款PoE用电设备(PoE-PD)器件——NCP1081和NCP1083,均符合即将发布的IEEE802.3at标准,但也能支持两对线缆上达 40 W的功率电平,以及使用所有4对以太网线缆传输电能时支持达80 W的功率电平。

安森美半导体在PLC调制解调器领域为工业应用提供数款器件,例如,AMIS-30585提供全套调制解调器,它使用FSK调制技术,为计量、传感器和公用事业机构的负载控制提供强固及可靠的网络接口。

结论

在建筑物和工业自动化或家庭及办公室应用中搭配使用PoE和PLC这两种已有技术,能够提供数项优势,既有可能优化电力及数据网络的敷设成本,同时又能维持整个系统较高等级的能效。

1 引言

CAN总线是现场总线的一种,初用于汽车内部检测部件与执行部件之间的数据通讯,有极强的抗恶劣环境和抗干扰能力。由于本身的特点,其应用范围已经由交通运输扩展到过程控制、数控机床、机器人、智能建筑、医疗器械等领域,被公认是几种有前途的现场总线之一。

与多数现场总线(如Profibus、CC-bbbb等)的物理层采用RS485主从协议不一样,CAN的介质访问采用载波侦听多路访问(CSMA)技术,从而允许多主工作方式。并且,由于采用非破坏性总线仲裁技术,大大节省了总线冲突仲裁时间。与多数现场总线不一样,CAN总线只有物理层和数据链路层,应用层留给用户开发,使用户拥有了相当的灵活性。这些优点令人注目,以致于一些颇有名气的现场总线(如DeviceNet、CANopen等)的底层就使用CAN。很多处理器制造商将CAN总线协议集成到他们的CPU芯片上,如51系列单片机、196系列单片机、运动控制专用数字信号处理器DSP等;很多变频器制造商将CAN通讯卡作为选件提供给用户或者干脆集成在变频器中,如Lenze93系列变频器、Siments6SE系列变频器、三菱FR-A500系列变频器等;很多可编程控制器制造商给用户提供CAN通讯卡选件或者提供CAN总线接口,如贝加来(BR)2000系列可编程控制器、西门子S5系列可编程控制器等。CAN总线简单易学、容易开发、有众多的厂商支持,适合中国的国情。

印染前处理设备,如退煮漂联合机、布夹丝光机、直辊丝光机、皂洗机等,机台长,采用多电机分部传动,要求恒张力同步调速。目前,流行的技术是用PLC控制多台变频器,用松紧架或者张力传感器实现多机台同步。印染后处理设备(如热风拉幅机、热定型机等)、造纸生产线、湿法毡生产线也采用了类似的技术。这里变频器使用的很多,变频器与可编程控制器之间的连接线也很多,频率给定、各种监控信息(如电压、电流、速度、转矩等)采用模拟量,模拟量容易受干扰。如果引入现场总线技术,众多变频器与可编程控制器之间的连接线大为减少(实际上减为两根),模拟频率给定变为数字频率给定,各种监控信息、操作信息可以在现场总线上传递,以上的缺憾得以解决。

2 基于CAN总线的PCC退煮漂联合机控制方案

控制部分的核心是一台贝加来可编程计算机控制器(Programmable Computer Controller 简称PCC)BR2005,它通过422总线与触摸屏监控站(Provit2200)相连,在此操作者输入指令并监控整机的运行状态。PCC通过CAN总线与29台西门子变频器相连,用CAN总线传送频率给定命令、起停变频器、监视变频器的运行状态。29台变频电机间的同步由松紧架完成,图中没有画出。PCC还完成整台设备的逻辑控制以及温度、压力、liuliang、液位、PH值和配方的闭环控制。详见图1。由于使用了现场总线技术,使得变频器的现场连接线大为减少,实际为两根线用菊花链方式将PCC与29台变频器串接起来。贝加来可编程计算机控制器,是集计算机技术、通讯技术、自动控制技术为一体的新型工业控制装置。可编程控制技术从60年代诞生以来,经历了可编程逻辑控制器(Programmble Logic Controller),简称PLC,可编程控制器(Programmble Controller),简称PC,到的PCC,已是第三代产品。新一代的PCC已经能胜任大型的集散控制和复杂的过程控制。其良好的兼容性、丰富的功能函数、品种多样的硬件模块、编程语言的使用、模块化的编程方式,使PCC已能满足各种工业控制的需要。该PCC的编程平台采用BR提供的Automation Studio软件,bbbbbbs界面,使用方便。它具有RS232、RS485、RS422、和CAN、Profibus现场总线接口,可以方便的构成控制系统计算机网络。监控站(Provit2200)是一台486工控机,配有CAN、RS485、RS422、RS232接口和5.7英寸彩色液晶触摸屏和16键,通过RS422与PCC交换信息。该PCC除了配有CPU和CAN通讯模块外,还装配了5块数字量输入(5*16点)模块、3块数字量输出(3*16点)模块、2块模拟量输入(2*8点)模块和2块模拟量输出模块。逻辑控制部分采用梯形图编程,CAN通讯部分和闭环控制部分采用Basic语言编程,也可以选用C语言编程。全部程序由三人分头完成,放在同一个项目下面。相互的关联借助全局变量完成。

newmaker.com
图1 退煮漂联合机控制简图

3 基于CAN总线的PLC湿法毡生产线卷绕部分控制方案

控制部分的核心是一台西门子S5-95U可编程控制器PLC和三台Lenze93系列交流伺服控制器9326。PLC通过CAN总线与三台交流伺服控制器9326交换信息,实现变张力卷绕控制,如图2所示。S5-95U除了配有CAN通讯模块外还有64点数字量输入输出。

newmaker.com
图2 湿法毡生产线卷绕部分工作原理图

这里总共使用了三台LENZE-9300系列伺服控制器(9326),驱动三台带有旋转变压器(R)的变频专用异步电动机(M)。其中,拖辊伺服控制器9326(1)工作在速度模式,它的速度给定(1/2端)来自生产线主控PLC的模拟量输出,辅助速度给定(3/4端)来自于松紧架信号,以此和生产线保持同步;卷轴1和卷轴2伺服控制器(2/3)工作在转矩模式,具有内部卷径计算功能,能对通过CAN总线由PLC发送来的张力给定信息和由张力传感器发送来的实际张力信息进行闭环控制。无须对卷轴1和卷轴2实行专门的速度控制,它们能够自动的将其线速度浮动到需要的数值。卷径计算所需要的线速度信息由拖辊伺服控制器通过专门的速度级联接口X9-X10送来,卷径计算所需要的转速信息由旋转变压器测定。卷轴1和卷轴2交替工作,实现连续的卷绕,由LENZE-8215变频器驱动的换轴电机完成换轴功能(图中没有画出)。CAN总线还将伺服控制器(2/3)计算出的卷径信息发送到PLC,由PLC据此完成张力给定的计算,然后通过 CAN总线送回伺服控制器(2/3)。卷绕部分对卷轴的要求是内紧外松,这就要求初始张力大,随着卷径的变大,张力按照某种规律逐渐变小。该应用系统能完全满足这些要求,实际运行证明上述卷绕系统运行可靠,卷径由86毫米到1200毫米卷绕密实整齐,卷绕速度可达80米/分。

4 基于CAN总线的工控机平网印花机刮印部分控制方案

图3示出了一个对BUSH-5V平网印花机刮印部分控制的改造方案。原方案在中央控制器和刮印单元之间使用RS-232串行通讯,速度慢,可靠性差。因而一些关键性的操作仍然沿用传统的方法,直接连线。BUSH-7V改用RS-485串行通讯,可靠性有了tigao。在我们的方案中,使用CAN总线实现中央控制IPC与各刮印单元变频器之间的串行通讯,广播起停命令、监控各刮印单元的工作状况;各刮印单元之间也可以相互通讯,复制设定信息,简化刮印单元参数的重复设定。鉴于CAN的可靠性很高,所有的控制和状态信号都通过总线发送,简化了布线,tigao了实时性。

这里,刮印单元共有18套,使用我们自己开发的基于DSP的专用变频控制器。运动控制专用TMS320LF2407 DSP芯片中集成有CAN控制器,不用增加任何硬件,专用变频器便有了CAN通讯功能。中央控制单元IPC中配有CAN通讯卡。

有关CAN总线的讨论文章已经很多,用的比较多的独立CAN芯片是SJA1000,带有CAN控制器的8位单片机有P8xC591等,但是TMS320LF2407中集成的CAN控制器很有特点。它有六个邮箱,其中有两个发送邮箱、两个接收邮箱、两个发送/接收可选邮箱;每个发送邮箱有独立的发送标识码,每个接收邮箱有独立的接收验收码,每两个接收邮箱公用一个接收屏蔽码。这种多邮箱安排比SJA1000的相当于只有两个邮箱(一个接收邮箱/一个发送邮箱)来说,极大的方便了用户构造更复杂的网络,实现更为灵活的通讯。也简化了通讯协议的编写。

ISO 11898 CAN通讯协议只有两层:物理层和数据链路层,必不可少的应用层协议留给二次开发者选择或者设计。可以选用的较为通用的应用层协议主要有:CANopen、DeviceNet和SDS,其中CANopen在欧洲较为流行,而DeviceNet、SDS则在美国比较普遍。考虑到我们所开发的平网印花机刮印单元变频器是专用的,因而没有采用通用的应用层协议,而是量身定做了我们专用的应用层协议。物理层协议负责物理信号的传输、译码、位时序、位同步等功能;数据链路层协议负责总线仲裁、信息分帧、数据确认、错误检测、liuliang控制等功能;应用层协议主要负责标识符的分配,其次是网络启动或者监控节点的处理等。由于CAN协议没有规定信息标识符的分配,因而可以根据不同的应用使用不同的方法。所以,在设计一个基于CAN的通讯系统时,确定CAN标识符的分配非常重要,是应用层协议的主要内容。

newmaker.com
图3 平网印花机CAN总线控制网络

5 结论

从以上的分析论述中,可以得出以下简单的结论:CAN总线以其特点,与PLC和IPC相结合,已经在印染类设备(包括造纸类设备)的控制中占有了重要的位置。考虑到CAN的开发比较容易,应用层协议留下了二次开发的余地,对于没有自己的现场总线标准的中国来说,CAN给了我们机会。

引 言

X62W铣床是一种高效率的加工机械,在机械加工和机械修理中得到广泛的应用。铣床的操作,是通过手柄同时操作电气与机械,以达到机电紧密配合完成预定的操作,是机械与电气结构联合动作的典型控制,是自动化程度较高的组合机床。但是在电气控制系统中,故障的查找与排除是非常困难的,特别是在继电器接触式控制系统,由于电气控制线路触点多、线路复杂、故障率高、检修周期长,给生产与维护带来诸多不便,严重地影响生产。时随着工业自动化的发展,对工业智能化程度的要求越来越高,以及市场经济要求制造业对市场需求做出迅速反应—生产出小批量、多品种、多规格、低成本和高质量的产品。为满足这一要求,生产设备和自动生产线的控制系统必需具有极高的可靠性与灵活性,这就需要使用智能化程度高的控制系统来取代传统的控制系统,使电气控制系统的工作更加灵活、可靠,更容易维修,更能适应经常变动的工艺条件。基于这些问题,本文提出了利用西门子S7-200和触摸屏对X62W 型卧式铣床的继电接触式电控系统进行技术改造的方案。

1 X62W铣床工作原理及继电器接线图

工作原理见图1。

newmaker.com
图1 工作原理

主电路中有三台电动机,M1是主电动机,拖动主轴带动铣刀进行铣削加工;M2是进给电动机,拖动升降台及工作台进给;M3是冷却泵电动机,供应冷却液。三台电动机共用一组熔断器FU1作短路保护。每台电动机均有热继电器FR作过载保护。其中以主电动机的热继电器FU1和冷却泵电机的热继电器FU2作总的保护,它们的常闭触头串在控制电路的总线上,而进给电动机的热继电器FR3只作进给系统的保护,其常闭触头接在进给控制电路中。因为主电动机要求不频繁的正反转,用组合开关SA5控制倒相。进给电动机的正反转频繁,用接触器KM3和KM4进行倒相。冷却泵在主电动机起动后方可开动,另有手动开关SA1控制。主电机采用两组起动按钮SB3和SB4并联,两组停止按钮SB1和SB2串联。接触器KM1是电动机M1的控制接触器,SQ7是位置开关,用作主轴变速的冲动开关。主轴的起动,按下起动按钮SB3或SB4,接触器KM1通电吸合并自锁,主电动机M1起动。当主电动机起动后,KM1的辅助触头接通控制电路的进给控制部分,才可以开动进给电动机。 电机的转速达到一定速度时接通速度继电器,当按下停止按钮SB1或SB2时,接触器KM2得电,主轴电机反转。

工作台向右进给,当主轴起动后,工作台控制电源接通。将位置开关SQ1旋转,SQ1-1常开触头闭合,接触器KM3通电吸合,电动机M2正转。当运行到预定位置时,位置开关SQ1复位,电动机M2停止转动。

工作台向左进给,将位置开关SQ2旋转,SQ2-1闭合,SQ2-2断开,接触器KM4通电吸合,电动机反转,工作台向左移动。

当SA3-1、SA3-3闭合SA3-2断开时,电流通过11、SQ6、15、SQ4-2、16、SQ3-2、17、SA3-1、18、SQ1-1(或11、SA3-3、21、SQ2-2、22、SQ1-2、17、SA3-1、18、SQ3-1)、19、KM4、20 ,KM3得电M2正转,工作台向下运动。

当SA3-1、SA3-3闭合SA3-2断开时,电流通过11、SQ6、15、SQ4-2、16、SQ3-2、17、SA3-1、18、SQ2-1(或11、SA3-3、21、SQ2-2、22、SQ1-2、17、SA3-1、18、SQ4-1)、24、KM3、25, KM4得电M2反转,工作台向上运动。

当SA3-2闭合 SA3-1、SA3-3断开时,电流通过11、SQ6、15、SQ4-2、16、SQ3-2、17、SQ1-2、22、SQ2-2、21、SA3-2、19、KM4、20, KM3得电。当SA3-2闭合,SA3-1、SA3-3断开时,进给电机M2正反转就组成了互锁,SQ1,SQ2,SQ3,SQ4位置开关控制圆盘旋转不同的位置。

不论电动机正反转,接触器KM3和KM4的线圈电流都由SQ1-2和SQ3-2接通。若机床正在向左进给机床的联锁问题,当SQ2或SQ4被旋转时,它们的常闭触头SQ2-2或SQ4-2是断开的,所或向右进给时,发生误操作,压着上下前后手柄,则一定使SQ3-2或SQ4-2中的一个断开,使KM3或KM4断电释放,电动机M2停止运转,以确保安全。位置开关SQ6为进给变速冲动开关。

冷却和照明控制,冷却泵只有在主电动机起动后才能起动,所以主电路中将M3接在主接触器KM1触头后面, SA1控制冷却泵。照明电路用安全电压36伏用开关SA4控制。

2 X62W型铣床控制系统的硬件构成

2.1 PLC 的选择和硬件设计

根据X62W铣床电气控制要求,输入输出均为开关量,需要PLC监测的输入信号有8个按钮,5个行程开关,两个选择开关,输入点为 21点,PLC输出控制信号有6个继电器,1个照明灯,共7点。因此,选用了西门子S7-200PLC,具体配 置 如 下 :CPU226CN AC/DC/DC型(6ES7 216-2BD23-0XB8),自带24点输入,16点输出,自带两个接口2个RS-485接口 PORT0和POT1,一个通讯接口,能满足控制要求。PLC的I/O口分配是根据其控制对象的特点和控制要求,将I/O口的输入输出口与相应的电气设备相连,达到控制和检测的功能,具体I/O分配如表1。进行完I/O分配后,进行PLC硬件设计,PLC外接硬件电路如图2。

newmaker.com
图2 PLC外接硬件电路图

表1 I/O分配表
newmaker.com

表2 内部寄存器I/O分配表
newmaker.com

2.2 PLC编程

根据机床控制要求,PLC语句表如程序1。

程序1 手动控制程序
newmaker.com

在程序设计过程中,用了6个内部辅助继电器来简化程序设计,主轴电机正反转互锁和进给电机正反转互锁tigao了系统运行的可靠性。在程序中将不同的控制方式均分开设计,这样程序结构简洁、清晰。由于整个系统用触摸屏控制,它可替代物理按钮和开关及其指示灯,所以在编程序是这些按钮和开关均使用了内部寄存器M0.6-M3.1, 把下面程序的输入寄存器改成相应的内部寄存器即可。内部寄存器程序,如程序2。

程序2 自动控制程序
newmaker.com

3 触摸屏选择及设计

触摸屏越来越多的用在了工业中,方便,易于远程控制。根据X62W铣床的控制要求,我们用NTOUCH触摸屏和MCGS组态软件配合PLC来替代控制柜上的按钮和选择开关等物理元器件,并且还可以通过触摸屏来监视铣床运行动作情况。

3.1 MCGS组态编辑

通过对系统的分析,在本系统中,依靠MCGS系统设计组态画面,实现对系统操作和监控,以上提到此系统的输入和输出均是开关量,所以在MCGS组态的实时数据库中定义的名字类型也要为开关型的。

3.2 通讯连接

既然用MCGS控制此系统,那么怎么才能让其与西门子PLC相互通讯,起到监控的作用?MCGS组态软件在设备窗口中建立系统与外部硬件设备的连接关系,使系统能够从外部设备读取数据并控制外部设备的工作状态,实现对工业过程的实时监控。根据此系统的控制要求以及控制方式,可以利用PPI电缆,相互传数据,以便实现监控。

在设备窗口中需要设置设备0-[通用串行口父设备]属性和设备1-[西门子S7-200PPI]属性,此时,还需要设置设备内部属性增加相应的PLC通道,和通道读写类型,输入通道多数用到的是内部寄存器,读写类型是只读类型,输出寄存器Q0.0~Q0.6读写类型,Q1.0.和Q1.1只读类型值读取SA313和SA32的开关信号,在实际通讯过程中,在设备属性设置中“串口端口号”设为0-COM1,通讯波特率设为:6-9600,数据位位数:3-8位,数据校验方式:偶校验,一位停止位,数据采集方式:同步采集。设置完后单击“确认”按钮返回。

为了西门子S7-200PLC与MCGS更好的通讯,必须在设备属性设置:[设备1]对话框中设置属性设备注释为:西门子S7-200PPI,初始工作状态为:启动,小采样周期为:1000ms,PLC地址为:2,内部属性设置PLC通道要与实施数据库中所定义的名字相对应。如图。

newmaker.com

编辑完毕组态画面,在上位机上试验成功,便可以通过上位机的网线接口用一根网线和触摸屏上的网线借口相连接,并且在MCGS嵌入式组态软件菜单栏中“工具”\“下载配置”设置好IP地址,便可以下载到触摸屏中。然后,用PPI电缆连接触摸屏和PLC,母头连接触摸屏COM5口,公头连接在PLC接口上,即可实现丢掉控制柜面板上的按钮控制,用触摸屏的软按钮控制,画面生动,清晰。

4 结束语

本文所述方案是对原来的继电接触式模拟控制系统进行 PLC与触摸屏改造而成,已在实验室控制柜予以实施。运行结果表明,该 PLC 控制系统无论是硬件还是软件,控制稳定可靠,且尽大限度降低了操作的危险性


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com