西门子模块6ES7231-7PB22-0XA8接线方法
西门子模块6ES7231-7PB22-0XA8接线方法
一、概述
随着凯迪恩PLC应用范围的增加,在某些行业已经具有了很高的度。压瓦机行业就是这样。由于凯迪恩PLC可靠性高、精度高、价格低,适合压瓦机自动控制,现在已广泛应用到单剪、琉璃瓦、C型钢等十几种彩钢瓦设备上。其中琉璃瓦和C型钢的控制系统以设计理念先进,通用性强,应用范围广而具有行业水平。下面简单介绍一下在C型钢设备上的应用。
二、工艺简述
带钢从设备的尾部送入,经过各种压辊压制成C型钢从头部送出。传统工艺中,C型钢压制成型后需要人工进行定长切断,再搬运到冲孔设备按照客户要求的尺寸打孔,生产不能连续,效率不高。凯迪恩公司技术人员与设备生产厂家密切配合,逐步改进生产工艺,终实现了全工艺过程自动控制,飞跃性地tigao了生产效率,增加了客户设备的技术含量和附加值。
改进过程分三步完成。步改进,增加长度测量装置和飞锯,当压制长度达到设定的长度时飞锯动作,自动切断型材。第二步改进,加一台打边孔的液压冲孔设备,一次同时冲四个孔,飞锯从中间切断,这样就形成了相邻两段C型钢的头、尾各两个边孔。第三步改进,再增加一台打中孔的设备,在带钢压制过程中按用户设定的间距冲出中孔,大可以打16个中孔。第四步改进,针对新型C型钢要求在型材中部打出双孔的要求,将边孔4孔冲孔模具改为2孔模具,修改打边孔的程序,使得边孔冲压设备能够在中部打出双孔,并且孔距由用户设定,大可以打8组双孔。这样就可以满足所有C型钢的要求了。现在以凯迪恩PLC为核心的C型钢控制系统能生产这种高要求的型材,孔距和长度精度满足要求。
三、硬件配置
输入点:检测开关、操作开关等。
检测开关有:飞锯的起点、终点开关;边孔的起点、终点开关;中孔的起点、终点开关;编码器(A、B相);
操作开关有:方式选择开关(自动、手动、中位);辊道前进、后退;飞锯切断、返回;中孔下降、上升;边孔下降、上升;急停开关。
输出点:辊道电机(变频器)、液压电机;飞锯前进、后退阀;中孔下降、上升阀;边孔下降、上升阀;
硬件配置: KDN-K306-24AR 一台
KDN-K321-08DX 一台
KDN-KA文本屏 一台
四、控制工艺
PLC和文本屏程序包括六大功能:设备参数设定、手动对位、生产参数设定、报警查询、生产画面、厂家信息。以下是具体特点:
·设备参数是出厂前工厂内部设定的参数,是由设备制造厂的人员来设定的。
·生产参数是生产人员设定的,比如生产的张数、边孔个数、中孔个数及长度等参数。
·报警查询是当有报警发生时,显示画面自动跳转到报警画面。生产人员处理故障后按复位键,设备可转入正常生产。
·厂家信息是显示生产厂家名称、地址、电话等信息。
· 生产画面是正常生产时显示的信息,包括生产设定的张数、实际的张数、设定长度、当前长度等等。
·手动对位是一种很灵活的方式,可以生产任意长度的C型钢。
·密码功能是凯迪恩公司根据客户要求设计的保护设备厂家利益的特色功能,每一套设备一个密码,由设备厂家自行管理。
· 自动补偿功能保证成品精度,既能补偿过冲量,也能补偿收缩量。
·设备参数可以保存,生产参数保存三天,如果断电时间不超过三天,上电后仍可继续按断电时的状态生产。
五、结束语
凯迪恩PLC在压瓦机行业的批量应用,证明了凯迪恩PLC优良的性能。同时凯迪恩工程技术人员具有丰富行业经验,能够与设备生产厂家紧密协作,共同推出适合行业特点的控制系统解决方案,这种协作将有利于设备厂家tisheng产品的竞争力
目前,电视节目的拍摄、制作、传输到播出正在实现数字化。MPEG视频音频编码标准的出现,解决了电视信号数字化后信息量过大而信道带宽有限的问题,加上数字视频硬件方面的产品不断进步,促进了各种数字视频产品的推出,这一切都预示着电视广播全面步入数字化的时代。数字电视产品的开发不仅能给观众带来高品质画面和音响效果的享受,而且MPEG-II视频音频压缩的ATM网接入技术的开发为VOD(视频点播)的时代铺平了道路。
目前世界上的数字电视系统标准有欧洲的DVB系统和美国的ATSC系统。这两种系统在视频压缩上都采用MPEG-II标准,在声音上DVB系统采用MPEG-II的音频压缩标准,ATSC系统则采用杜比AC-3压缩技术。本文介绍C-Cube公司MPEG-II编码器芯片D,它可用于欧洲DVB标准常规数字电视的前端系统的产品开发中。
1 芯片简介
C-Cube公司开发的视频处理单芯片D是在该公司DVx的MPEG-II单芯片编/解码结构的基础上tigao了性能的处理器。它可以产生高品质的4:2:0和4:2:2 MPEG-II图像,同时压缩率也有所tigao。该芯片能实现视频编码(video encoding)、解码(decoding)和编/解码(codec)三种功能,可实现运动补偿、分块/离散余弦变换压缩算法。
D处理器的核心是32位Micro SPACR RISC Core处理器,工作频率为100mhZ。该处理器内有一个16K字节指令的高速缓冲存储器(I-Cache)和一个8K字节的数据存储器(Data Memory)接口,这是一种可编程可升级的结构。芯片采用数据存储器而不是数据缓冲器,目的是使软件能更多地控制存储器,并允许重复进行DMA传输。此外,D处理器还有两个协处理器:DSP协处理器和运动估计协处理器(Motion Estimator),减轻了RISC处理器运算的负担,它们共同完成视频压缩编码算法,tigao了编码速度。DSP协处理器每秒钟可执行大约16亿个算术操作指令(1600MOPS),执行向量从存储器到存储器的指令,这能tigao从RISC到DSPliuliang操作速度。其8K字节存储器有两个缓冲区(两个块),可允许DMA和DSP同时操作。
DSP协处理器能完成以下功能:①解电视电影模式;②活动测量;③运动补偿;④自适应暂时滤波;⑤线性滤波和筛选;⑥DCT变换和逆DCT变换(12位);⑦量化和逆量化;⑧变长的Huffman编码和解码。
可编程运动估计协处理器(运动估计器ME)支持所有的块匹配和运动估计类型,它从RISC处理的CPU中取得运动估计的命令并返回结果。每次运动估计完成后会产生一个中断。
很多公司都有自己所开发的单芯片MPEG-II编码的LSI。进行DCT及运动补偿等演算所需的电路结构各不相同,C-Cube公司开发的D等芯片为大部分处理工作由RISC处理器及DSP等完成的“处理器型”芯片,与之配套的还有C-Cube公司开发的软件,即微码(.ux)文件。该文件包括进行视频压缩的代码以及初始化D处理器的存储器和下面要介绍的处理器外挂的SDRAM。因为它的可编程性能好,只要改换输入到处理器的微码,就可以变更压缩算法或修正软件的差错。
D的内部模块框图如图1所示。
由图中可见,D处理器是利用PCI总线接口与主机等设备相通信的,主机必须用PCI总线驱动处理器,控制编码过程;压缩好的视频比特流也必须经PCI总线存储到主机内,PCI接口由主机时钟(33MHz)驱动。
D处理器还有与串行ROM的接口,开发人员可选择利用串行EPROM装载部分初始化程序。在本开发系统中,为了使硬件电路简化,所有全部初始化过程都由驱动程序经PCI总线接口完成(可省去串行EPROM)。
该芯片还可外挂64bit同步动态RAM(SDRAM),实际电路采用4片16M比特的SDRAM实现8M字节外部存储器,存储C-Cube公司的微码和数据,并可由开发人员分配存储空间。当处理器进行MPEG-II视频编码时,SDRAM所含具体内容如下:①应用程序微码;②视频帧捕获缓冲区;③运动估计取样视频缓冲区;④预测的重构帧缓冲区;⑤参考帧;⑥速率缓冲区;⑦用于编码算法的本地表和其他数据。
处理器有视频接口,可输入/输出未压缩的数字视频流;还有音频接口,可输入/输出未压缩的数字音频(为获得与视频同步的信息)。D处理器只能进行视频编码,而未压缩的音频数据只能经PCI总线送到主机存储器,在D处理器外进行软件压缩。
本开发系统进行4:2:0Main Level @ Main Profile 的视频编码,仅用一片D处理器,因此可不用其和另一处理器相连的IPC的接口。
2 驱动程序的开发
虚拟设备驱动程序可包含对设备进行操作的设备专用代码,任务具有可设操作模式,需保存数据的硬件设备都需要有虚拟设备驱动程序。虚拟设备保持了每个应用程序的设备状态轨迹,并能保证当应用程序继续执行时设备处于正确状态。编码器将D集成于即插即用的PCI插卡,因此要开发该PCI设备的虚拟设备驱动程序(VxD)以支持编码器芯片的正常工作,该软件采用Microsoft VC 6.0开发,在WIN98操作系统下运行。WIN98操作系统的基本系统体系结构分成Ring0层和Ring3层,它们能提供不同级别的系统保护。Ring3层通过Inbbb处理器体系所提供的保护服务与其他的运行进程隔开,以达到保护的目的。Ring0层由虚拟机管理器(VMM)等构成。VxD是一个管理硬件设备或者已安装软件等系统资源的32位可执行程序,运行在Ring0层,处理系统或外设中断及DMA操作等,它使基于bbbbbbs的应用程序可有效地实现多任务。WIN95/98的VxD对即插即用提供支持,因此当D处理器电路设计成即插即用PCI扩展卡时,起动后可由操作系统自动检测到它。VxD的软件开发可利用美国Vireo.Software公司推出的VtoolsD for Win95开发工具包进行,该VxD被开发成可动态加载/卸载的驱动程序,以保护模式驻留在扩展内存中。VtoolsD中的Quick VxD程序可提供一些选项来快速生成VxD代码框架。编码器的VxD应包括:设备的初始化,处理中断信号,以及与运行在Ring3层进行通信。
设备的初始化流程图如图2所示。
微码数据经PCI总线可以两种模式(从模式和主模式)传输到编码器设备上。从模式一次只能传一个32位的双字,速度慢,主模式以DMA方式猝发,可高速传大量数据。微码中写入处理器控制总线寄存器的部分只能采用从模式方式;微码中写入SDRAM中的数据根据.ux文件要采用DMA方式,这要通过设置处理器的一些寄存器实现。
WIN95/98的内存为平滑线性内存模式,线性编址模式简化了应用软件的开发过程,提供了存取虚拟地址空间的功能,使用户可存取的内存地址达4GB,2GB给应用软件,2GB给操作系统本身,因此VxD能申请4个BUFFER,用于存放DMA方式传输编码时所用的命令和消息,该BUFFER表示物理地址连续的空间,同时还可映射为相应的线性地址空间。
虚拟设备驱动程序可处理编码器工作时发来的中断,其服务过程如下:
①首先清除中断;②ISR把BUFFER中的消息存放到消息队列;③ISR检查当前消息的序列号:如果有错,转到处理错误的函数,若无错,ISR把命令队列中的下一个命令移到Ring0层的BUFFER内;④分析消息队列内的新消息,并且写相应的新命令。
在WIN95/98中,Win32API提供设备输入输出控制(DeviceIoControl)来支持Ring3到Ring0的直接调用,它通常用于调用动态加载的VxD;Ring0层则可通过OnW32DeviceIoControl(PEOCTLbbbbbSpDIOCbbbbbs)中的pDIOCbbbbbs->dioc_OutBuf向Ring3层传递数据。
D提供的PCI接口和编程接口使其可方便地集成到PC插卡上,而且可由驱动程序对其进行较灵活的控制。目前该VxD已在使用之中,编码器设备工作良好。
将燃料电池与蓄电池、超级电容或其他电能储存装置集成在一起构成混合电源,能够解决很多动态供电与发热的问题。但是,这种方案本身也具有电源管理方面的问题。
混合电源
在本文所讨论的电源架构中,我们称燃料电池与蓄电池的组合结构为混合(电源)系统。这种架构广泛应用于多种燃料电池和蓄电池,并取代了诸如超电容或超级电容之类的储电装置。但是,每种混合电源实现方案都是经过专门设计的,以满足所选择的燃料电池和蓄电池的独texu求。
混合电源系统主要的组件包括燃料电池、燃料盒、蓄电池、系统负荷、直流输入电源和电源控制器(见图1)。燃料电池与蓄电池的结合称为混合电源(HPS)。
上述系统在使用的不同阶段,能够用做三种能源和两种负载。当该系统没有插接直流电源时,燃料电池和/或蓄电池的组合结构能够为系统负载供电。另外,当直流电源不存在时,燃料电池还能够对蓄电池进行充电,以尽可能地增强电源断电末期(end-of-power-shutdown)的性能,或者实现更好的系统动态电源响应特性。当直流电源可用时,它既对蓄电池进行充电也对系统负载进行供电。
对于这种复杂的结构,我们必须对系统的电源通路管理进行jingque控制,以确保系统负载的运行总是能够满足终端用户的使用要求。关键的控制时机是当可用的电量降低到一定的水平时,这时电源无法再为系统负载供电,导致了受限的使用配置,甚至执行了受控的关机操作。
为了实现这种jingque的控制,电源控制器必须能够检测多种因素以产生有效电量和总有效电量峰值等关键数据。这些关键数据的定义如下:有效电量峰值定义为混合电源在一定的短期时间内能够提供的电量,例如DVD机启动或关机时光盘操作所需的电量。峰值周期取决于终端设备的负载分布特征。总有效电量定义为混合电源能够提供的总电量,它与放电比率无关。
图1 采用混合电源的电源系统
系统监测
利用目前市场上供应的标准燃料计可以对蓄电池进行监测,例如使用BQ20Z75监测两组、三组或四组串联结构的锂离子电池,或者使用BQ27210监测单组串联的锂电池。这些监测方案能够为电源控制器提供所需的电压、电流、温度、电荷状态等数据。
蓄电池监测系统通过I2C、SMBus或HDQ之类的数据总线实现与电源控制器连接。通过这种接口方式,电源控制器能够获得非常jingque的电池电荷状态(SOC),以确保在充放电的过程中都能够安全使用电池。
对燃料电池和燃料盒的监测更具挑战性。燃料盒内可用燃料的种类和数量,以及燃料电池的当前与平均效率都是监测燃料电池有效电量需要考虑的因素。
在很多情况下,燃料盒是系统特有的装置,因此燃料的类型数据可以保存在电源控制器中。在其他一些电池监测系统的实现方案中,我们需要提供存储在燃料盒内燃料的数据,并通过类似的接口总线传给电源控制器。
具有数据存储功能的燃料盒实现方案中,好的方法是通过电源控制器或者燃料加注系统将测量出的剩余燃料数据写回到燃料盒中。但是这种方法可能只适用于燃料盒能够取出并重新插入的电源系统。
除了燃料盒的燃料数据之外,对于燃料电池还需要监测其他一些参数,包括温度、燃料注入速率、输出电压和输出电流。这些参数用于计算燃料电池的当前效率。比如,通过温度参数可以判断出燃料电池当前是否处于佳工作状态。
此外,我们还需要测量直流电源和系统的负载功率等数据。通过这些数据以及来自于监测子系统的数据,我们就可以计算出总有效电量和峰值有效电量的值。终端设备的有效运行时间取决于这四个因素。
在分析电源断电末期的特性时,燃料电池功率输出的响应能力和蓄电池的尺寸也会带来新的问题。这需要进一步了解有关知识。
预测HPS运行时间
蓄电池和燃料电池监测子系统能够为主系统提供总电量和峰值电量的数据,使主系统能够判断各种所需的用户数据。在这个实例结构中,我们采用了一个电源控制器,它具有多种优点。主要优点之一就是能够管理数据和子系统,使得混合电源在使用过程中就好像一个标准的蓄电池电源一样。
电源控制器负责接收监测数据并管理蓄电池的使用过程,在HPS的预期寿命期内发挥高的性能。这对于两个方面特别有利。
通过燃料电池对蓄电池进行充电,即使在没有直流电源的情况下,也能够确保峰值有效电量处于佳的平。管理电池的电荷状态(SOC),从而尽可能地tigao这一结构的可用性。对SOC特性的管理与当前大多数便携式应用中使用电池的方式是相背离的。一般而言,蓄电池是唯一的无线电源,所以它必须为主系统提供所有的电能。因此,蓄电池应该安全地存储尽可能多的电能,终实现长的系统运行时间。同样,蓄电池的充电时间也是至关重要的,充电时间越短越好。我们可以在蓄电池的充电时间和寿命之间进行权衡,但是这在目前的消费产品中并不常见。对于HPS而言,这两个使用动力不起作用,因此采用电源控制器可以在蓄电池与燃料电池两者的佳状态之间实现更好的平衡。理想情况下,HPS中的蓄电池能够在整个HPS寿命期限内持续工作,不需要更换。为了实现这一目标,电源控制器可以提供蓄电池充电管理功能,例如在较低的电压下充电,采用较慢的速率充电,以及对充电电压/速率进行温度补偿。电源控制器通过调节电池的充电电流,能够确保当连接系统负载时有足够的直流电源供电。
近推出的智能电池数据集(SBDS)补遗将燃料电池的数据添加到现有的支持蓄电池的数据集中,使主机能够访问,从而控制燃料电池和蓄电池的使用过程。采用电源控制器之后,能够处理复杂的HPS功能,根据SBDS燃料电池附加内容能够帮助主系统更有效地使用HPS。
增加燃料电池和蓄电池的总有效电量,能够使主系统实现有效运行时间指示、剩余时间报警(RTA),或剩余容量/电量报警(RCA)等基本功能。
预测运行时间的公式如下所示:
AtRateTimeToEmpty (ARTTE) =总有效电量/AtRate( )
根据这一公式,主系统能够根据其掌握的用户操作意图判断有效运行时间,例如播放DVD,或者启动系统诊断。如果主系统能够进一步掌握在不同模式和不同程序下的能耗情况,那就更好了。
图2 电量使用率的对比
受控式断电与HPS运行时间的大化
由于未来总是难以预测的,因此为用户预测运行时间是一种“水晶球”式的做法。但是,根据电源系统所提供的数据,我们可以在电量较低时实现一种受控的系统断电过程。这种控制功能越jingque,系统的运行时间就越长。
受控关断必须要考虑测量误差,以确保其在任何条件下都能实现。对测量总可用电量的准确度的tigao将会直接增加用户的可用电量。因此,充分发掘能源的潜力将会获得更长的运行时间(见图2)。
V80 系列PLC 在挤出吹塑成型控制系统中的应用
摘要:本文介绍了V80 系列PLC 在挤出吹塑成型控制系统中的应用情况,详细阐述了挤出吹塑成型机的工艺过程,针对型坯温度、挤出压力、冷却时间和型坯壁厚等方面的控制特点,以V80 系列PLC 为例,重点描述了挤出吹塑成型控制系统的实现过程,后说明该控制系统具有良好的工程应用和市场推广价值。
关键词:PLC、吹塑成型、温度、压力、壁厚控制
1.引言
挤出吹塑成型机是目前产量大的一种生产容器和中空制品的吹塑成型设备,可生产出从小只有1ml 到大可达10000l 的各种容器制品,如牛奶瓶、饮料瓶、洗涤剂瓶、化妆品瓶以及化学试剂桶、饮料桶、矿泉水桶等。
近年来,挤出吹塑成型的主要技术趋势是朝着自动化、智能化、高精度和高速度的方向发展。因此,如何tigao传统挤出吹塑成型的整体技术含量,使之适应该行业技术发展趋势要求是很重要的课题。
本文描述的挤出吹塑成型机采用德维森科技(深圳)有限公司开发生产的V80 系列PLC作为主要的电气控制系统,应用情况说明该系统完全可以符合自动化、智能化、高精度和高速度的技术发展趋势。
,V80 系列PLC 高度融合了电子技术、自动化技术及网络技术,用V80 系列PLC作为吹塑成型机的控制系统,将使吹塑成型机具有挤出、合模、吹胀、冷却和开模等过程的自动控制功能,同时具有挤出型坯温度、挤出压力和冷却温度的自动调节功能,向着自动化和智能化的方向发展。
第二,V80 系列PLC 中的具备高精度的热电偶模块和模拟量输入输出扩展模块,可以满足型坯温度、挤出压力、型坯壁厚的高精度控制要求,达到制品成型所要求的质量要求,而且精度重复性好;采用高速硬件解析技术的CPU 模块和本身带有CPU 芯片和专用共享数
据区的模拟量扩展模块,可极大地tigao熔料塑化速度,挤出速度以及开合模速度,缩短了成型周期,并保证了制品的成型质量。
2.设备工艺过程
挤出吹塑是制造空心塑料制品的成型方法,是借助气体气体压力使模具内的热型坯吹胀成容器的。挤出吹塑设备由挤出机、机头、模具、吹气系统和锁模装置构成,如图1 所示,
其工艺过程:
(1) 将热塑性塑料从进料口进入机筒内,由挤出机将塑料熔化成熔料流体,经过挤压系统塑炼和混合均匀的熔料以一定的容量和压力由机头口模挤出形成型坯;
(2) 将达到规定长度的型坯置于吹塑模具内合模,并由模具上的刃口将型坯切断;
(3) 由模具上的进气口通过压缩空气以一定的压力吹胀型坯;
(4) 保持模具型腔内压力,使制品和模具内表面紧密接触,然后冷却定型,开模取出制品。
在吹塑过程中,型坯的形成和吹胀是吹塑过程的核心,型坯形成和吹胀质量的高低直接影响着容器制品的质量好坏,而熔料的受热温度、挤出压力和和冷却时间将直接影响型坯的成型和吹胀质量。型坯壁厚在吹气成型过程中若没有得到有效控制,冷却后会出现厚薄不均的状况,胚壁产生的应力也不同,薄的位置容易出现破裂。因此,控制型胚壁厚对于tigao产品质量和降低成本也同样重要。
,如何控制挤出机的受热温度、挤出压力、制品的冷却时间以及型胚壁厚成为影响容器制品质量的几个关键因素。
3.控制系统设计
3.1 系统原理及配置
粒状或粉状的塑料经挤出机塑化达熔融状态,通过采集电子尺数据,反馈控制挤出熔料量,使熔料通过预定流速进入机头。当储料量达预定值时,由PLC 控制机头口模打开。根据设定的型坯壁厚曲线,由PLC 完成进行型坯壁厚控制。同时,将熔融物料压出形成制品型坯,模具成型机合模机构采用四拉杆三板联动系统,合模机的运动速度按设定值实现自控,运动平稳。合模后吹气,型坯在模具内成型为中空制品,冷却定型后开模,由PLC 控制机械手取出制品。
系统电气控制部分的基本配置如下:
(1)控制器采用德维森科技(深圳)有限公司生产的V80 系列PLC 进行动作控制和50 点型坯壁厚控制。
(2)温度的测量采用工业铠装热电偶,温度控控制由V80 系列的热电偶模块E5THM完成,该模块本身内置CPU 芯片, 可执行PID 算法,在上电设置好参数后,E5THM 模块就可以自行控制固态继电器的通断,从而控制温度的稳定,波动范围小。
(3)压力传感器采用的是PT124 型压力传感器,数据采集工作由V80 系列的8 通道模拟量输入模块E8AD1 完成。
(4)壁厚控制由机筒电子尺反馈型坯长度给PLC,然后通过V80 系列的4 通道模拟量输出模块E4DA1 控制执行机构驱动伺服阀完成。
(5)操作面板采用触摸屏完成整机的型坯温度、挤出压力、型坯壁厚以及冷却时间等各种工艺参数的设定、修改、画面显示等,采用菜单式程序控制,操作简便可靠,能使设备经常处于良好运行状态,并保证人机安全生产。
3.2 温度控制系统
在挤出吹塑的过程中,需要加热和散热工作在平衡状态,以使挤出熔料温度达到某一动态平衡。因此,挤出过程的温度需要实时测量和控制。图2 所示为挤出吹塑机的温度控制系统框图。
挤出机的温度经热电偶采集到热电偶模块E5THM 中,模块内本身内置CPU 芯片,具有5 路热电偶输入和5 路晶体管PWM 输出,可以在模块内完成PID 控制算法,控制精度为±1℃。E5THM 采集到的温度信号与设定温度比较得到偏差信号,如果测量温度大于设定值,则模块按时间周期占空比的PID 算法,通过PWM 脉冲调宽技术控制固态继电器动作,使挤出机加热装置停止加热,反之亦然, 进行冷却控制操作。机筒温度设定和实时温度显示可以通过触摸屏完成。
3.3压力控制系统
挤出压力对于熔料的流变性能来说也是重要的影响因素,如果挤出工艺稳定,加工温度和螺杆速度不变,故黏度是一个常数。根据黏性流体的流动方程式可知,挤出机的挤出量与螺杆转速成正比,而机筒压力成反比。
因此,挤出过程的压力很重要,需要进行实时测量,以保障形成型坯的质量,进而保证了制成品的产品质量,压力测量系统如图3 所示。
3.4型坯壁厚控制
熔料从口模挤出处于黏流态流动一段时间,由于原材料特性、挤出温度和挤出liuliang随时间变化呈非线性变化,所以型坯在挤出过程中,型坯壁厚发生变化。为使挤出吹塑制品满足壁厚要求,必须采取有效措施控制型坯壁的厚度。
壁厚控制系统是对模芯缝隙的开合度进行控制的系统,也即位置伺服系统,它由控制器、电液伺服阀、动作执行机构和作为位置反馈的电子尺构成。当机头口模打开时,PLC 读取机筒电子尺反馈的型坯长度,然后根据型坯壁厚曲线,通过高精度模拟量输出模块E4DA2 输出±10V 的电压信号给电液伺服阀,伺服阀直接驱动执行机构控制模芯上下移动,调整口模与芯模的间隙大小来完成口模开度的控制,进而完成型坯壁厚的闭环控制,如图4 所示。此时,壁厚型坯设定采用数字化方式,通过操作面板完成50 点型坯壁厚控制的设定,型坯壁厚曲线的纵坐标显示型坯长度,横坐标显示口模开度。
3.5 冷却时间控制
在整个吹塑成形的过程中,冷却时间是控制制品的外观质量、性能和生产效率的一个重要的工艺参数。
控制适当的冷却时间可防止型坯因弹性回复而引起的形变,使制品外形规整,表面图文清晰,质量优良。但是,如果冷却时间过长,那么就会造成因制品的结晶度增加而降低韧性和透明度,生产周期延长,生产效率降低。如果冷却时间过短,那么所吹制的容器会产生应力而出现孔隙,影响制品质量。因此,在挤出吹塑中需要对冷却时间做较jingque的控制。
本系统中,V80 系列PLC 的时间定时器分辨率可达到1 毫秒,可通过触摸屏设定jingque的冷却时间,使有效tigao吹塑成形生产效率的同时,保障制品的外观质量和性能。
4. 结论
本文给出了V80 系列PLC 在挤出吹塑成型系统中的控制方案,重点阐述了PLC 在型坯温度、挤出压力、冷却时间和型坯厚度等方面的控制特点,说明该控制系统完全可以满足当前吹塑成型机对自动化、智能化、高精度和高速度的技术要求。
该系统已在华南某家挤出吹塑成型机生产厂家中获得了的应用,经过近一年的使用,系统运行情况良好,有效地tigao了型坯温度、挤出压力、冷却时间和型坯壁厚的控制精度,进而tigao生产效率和产品质量,具有良好的工程应用和市场推广价值。
- 西门子S7-1200 SM1231 热电偶模块6ES7231-5QF32-0XB0
- -西门子SSM1231 热电阻模块 6ES7231-5PF32-0XB0授权中国总 一级代理商
- 西门子SM1231 热电偶模块6ES7231-5QD32-0XB0授权中国总 一级代理商
- 西门子SM1231 模拟量输入模块 6ES7231-4HF32-0XB0授权中国总代理商
- 西门子SM1231 模拟量输入模块6ES7231-5ND32-0XB0
- 西门子SM1231 模拟量输入模块6ES7231-4HD32-0XB0
- plc 全新模块 6ES7231-5ND30-0XB0支持模块级诊断和通道级诊断
- 西门子模块6ES7231-OHC22-0XA8
- 西门子S7-1200 6ES7231-4HF32-0XB0模拟输入模块SM12318模拟输入
- 西门子CPU控制器6ES7231-7PF22-0XA0