西门子6ES7223-1BF22-0XA8使用说明
西门子6ES7223-1BF22-0XA8使用说明
1 引言
近年来,随着社会经济的高速发展,城市化进程持续加快,生活条件的改善和生活水平的提高,市民人均污泥水排放量也不断增长,加之市容、市貌、道路、房屋等基础设施建设带来的泥渣等经雨水冲刷,大多也进入排水管道,下水道污泥沉积速度加快,清淤和污水运输的工作量剧增。由于城市建设的发展,城区地域也以惊人的速度扩大,城市生活小区越来越多,相距越来越远,相应的排水管道的长度快速增长,排水管道疏通、清淤的工作量也成倍提高。市政排水部门除了定期疏通和清淤排水管道外,还要承担由于突发原因造成的排水管道堵塞的疏通抢险任务。因此,市政部门的排水管道疏通、清淤和污泥运输工作非常繁重,任务十分艰巨。
2 国内外比较
目前国内城市排水管道污泥的取出仍然靠人工作业,采用原始的拉、刮横道污泥至检查井,再人工一匙一匙地将其挖出,然后连泥带水一起运至指定地点集中处理。这种传统型的下水道清淤工作,与建设现代化文明大都市的要求相距甚远,其弊端也是显而易见的。首先是市政工人的劳动强度大,工作条件差,工作效率低;其次是造成了路面和环境的二次污染,因为运输过程中不可避免的抛撒滴漏现象,特别是在盛夏,污泥水更是臭气熏天,而且大量污水无处可倒,集中排放又而造成污染;再次是提高了运输成本,由于抽取的大部分是污水,只有少量污泥,所以增加了污水的运输次数和相应费用。
国外发达国家在城市规划时,排水管道设计得较为宽大,人员和机械均可进入地下管道作业,污泥可直接用泵输送至污水处理厂进行集中处理。而较小管道的清淤,基本使用专用车辆,采用高压水冲穿清淤,然后再用泵将泥水吸上来后运走。该种车辆的优点是将高压冲穿和吸取泥水二项功能集于一身,其缺点是不具备泥水分离装置,其运输物也主要以水份为主,因此运输效率较低。这种车辆在日本、美国、意大利和德国等国均有生产,我国也有少量进口。但是,价格昂贵,使用费用也较大,同时须带大量清水,对于人均水资源不高的国家和地区是不适宜的,加上我国城市排水管道中介质复杂,常常含有塑料袋、木块、较大砖块等杂物,因此,该车并不适合我国城市排水管道清淤的实际情况,使用效果不够理想。
鉴于以上情况,为提高城市排水管道清淤工作的机械化程度,提高工作效率和运输效率,我公司开发了这种集检查井取泥、泥水分离为一体的市政工程专用设备,并安装在特种车辆上,填补国内这一领域的空白。这样一次污泥的运输量为十几仍至几十个窨井的污泥总量,该设备采用PLC控制技术,可实现多次工作循环,从抽污泥水到输出污泥,可自动一步完成,也可人工分步完成。
3 原理与系统设计
设备主要有检查井取泥装置、污泥水快速自动分离装置、污泥输送装置、机组拖挂系统和自动控制系统等部件组成。
设备的阀门控制示意如图1所示。
图1 设备的阀门控制示意图
3.1 原理设计
先将抽污软管放入窨井中,启动车上发动机,开启取力器,接通控制电源,真空马达抽吸污泥水时,箱内气体经阀2抽出,污泥水经阀1吸入,然后将污水箱后端抬起,同时将底部低端的污泥送往高端,再由真空马达反向操作排压污水,气体经阀2充入,污水经阀1排出,通过一次排压将污水排出水量的二分之一或三分之一,接下来将所有阀门关闭进行抽真空,达到规定真空度后,大气先由旁通阀进入箱底管道,当箱内外气压相等时,真空马达再反向操作进行爆气,大气通过管道小孔从水底爆出,使气泡带着污泥漂浮起来,快速分离出其中的水份,使污泥达到一定的浓度,这时真空马达进行二次排压,将污水全部排至下水管道,如果污泥含量太低,可循环作业数次,后将污泥输送出箱。
3.2 主要动作
该设备进出水、气的阀门管道较粗,所以设计采用电、液和电、气控制,各阀门及反馈元件的动作见附表。
附表 液、气、电阀动作表
(1) 抽吸污泥水
通过真空马达对污水箱进行抽真空,当箱内达到一定真空度时,下水道中的污泥水通过管道开始吸入箱内;当污水箱中的水位达到高限位时,液位传感器反馈信号停止该动作。
(2) 排压污水
当污水与泥沙次分离后,由真空马达反向操作对污水箱进行充气,当气压达到规定值时,气压将分离后的污水从污水箱中排压出去,当污水占箱中水量二分之一或三分之一时,液位传感器反馈信号停止该动作;当爆气结束后,再进行第二次排压污水。
(3) 抽真空
对污水箱进行抽真空处理,当箱内气压达到规定真空度时,压差传感器反馈信号停止该动作,这是为了增加爆气的效果。
(4) 爆气
在污水箱真空的情况下,对箱内水底充气,产生爆气效果,使气泡带着淤泥漂浮至水面,当箱内气压达到规定的标准时停止该动作。
(5) 输送污泥
由箱内螺旋和箱外螺杆同时工作将污泥输送出来。
3.3 系统设计
(1) 控制真空马达的开和关,完成抽吸污泥水、排压污水及抽真空、爆气的工作;
(2) 控制四通电液阀的左开、右开和断电,完成真空马达的正(抽气)、反(充气)转换的操作;
(3) 控制举升换向阀的左开、右开和断电,驱动油缸完成污水箱后端的上升和下降工作;
(4) 控制筒盖换向阀的左开、右开和断电,驱动油缸完成筒盖的开、关工作;
(5) 控制螺旋换向阀的左开、右开和断电,驱动油马达完成螺旋输送器的正、反转工作,达到污泥的前后输送或搅拌之目的;
(6) 控制螺杆换向阀的左开、右开和断电,驱动油马达完成螺杆输送器进入、退出污水箱及输出污泥的工作;
(7) 控制旁通阀的开启,可提高爆气的效率。污水箱在真空负压状态下转入爆气高压状态,需要大气快速进入箱内,如果由真空马达充入气体,那么时间既长、效果又不好,因为真空马达的转速是一定的,所以充气量就受到了限制,大气由旁通阀进入,在短时间内就能消除负压;
(8) 控制溢流阀和发动机油门的开启,完成单个或数个液压执行元件动作的工作。溢流阀和油门的开关正好相反,当单个液压执行元件动作时,开启溢流阀,同时关闭油门;当数个液压执行元件动作时,关闭溢流阀,同时开启油门;
(9) 控制气阀的开关组合,完成抽吸污泥水、排压污水和抽真空、爆气的工作。
4 控制系统硬件及软件
控制元件选用SIEMENS CPU224和EM223,设计输入总点数为22点,输出总点数为22点,现用的可编程控制器输入总点数为30点,输出总点数为26点,能够满足设计要求。反馈元件为选用正负压差计、液位传感器、磁性传感器等。程序框图见图2、图3所示。所编制的程序因篇幅太长特省略。
图2 程序框图之一
图3 程序框图之二
5 难点与创新
5.1 难点
原来控制液位采用超声波传感器,现场调试发现超声波在真空及高压状态下工作不稳定,容易出现误动作,后来改用浮球液位传感器,使用效果良好。在抽吸污水、抽真空和排出污水、爆气的过程中,因为是同一管道进出污水,所不同的是四通阀的动作,zuoxuan为抽气,则抽进污水;右旋为充气,则排压污水,所以当四通阀在排污水时发生误动作,就会出现故障,严重时会导致事故,污水进入真空泵而将其损坏,经过改进,在四通阀上加装了传感器后,避免了这一现象的发生。因为电源为车用xudianchi,故要尽量减少各阀的通电时间,同时为了使各电磁阀在工作中开关可靠,在操作中均采用双向电控,即关闭时也通电,然后通过程序延时再进行断电,这样使程序较为复杂。
5.2 创新
该设备在快速污泥水分离、防堵塞、自动控制等方面已达到国内水平和接近国外近期先进水平。
(1) 将排水管道检查井取泥、泥水快速分离有机地组合在一起,形成体积较小、效率较高的排水管道清淤流动工作站,完全适应了城市排水管道清淤面广量大的特点,,必将受到市政排水部门的欢迎。
(2) 在泥水分离方面,采用高速离心分离技术,适应了城市排水管道泥水成分复杂、易堵塞、腐蚀性强的特点,工作介质范围较宽,具有防堵塞能力,而且能自动排渣、高效分离,水份回流至排水管道,不仅对井下污泥起到冲稀作用,而且防止了清淤和运输过程中路面的二次污染,符合环保的要求。
(3) 采用PLC技术,实现了全自动控制,增加了过载保护、温升保护、故障自我诊断等控制功能,做到人工启动,自动作业,高效、安全。
(4) 集液控、气控、电控为一体,机电液气有机组合,具有一定的技术难度,已获得国家实用新型专利和国家发明专利。
6 结束语
PLC可编程控制器特别适用于小批量非标设备的自动控制,其可编程性对单位研究开发新产品尤为有用,目前在各行各业中其用途之广泛,发展之迅猛,且应用的人员众多,以至于在自动控制方面占据半壁江山,甚至可以与电子控制、数字控制相媲美,这可能是开发其软硬件的技术人员所始料未及的。
城市下水道污泥水分离设备在市政部门具有广阔的发展前景,为减轻工人劳动强度,提高工作效率提供了价廉物美的产品,而PLC技术在市政机械上的成功应用,使其具有了自动化程度高,工作性能可靠等特点,完全可以用来替代国外同类产品,为进一步提升国内市政机械的档次奠定了基础。
PLC作为一种成熟稳定可靠的控制器,目前已经在工业控制中得到了越来越广泛的应用。PLC系统的设计直接影响着工业控制系统的安全可靠运行。一个完善的PLC系统除了能够正常运行,满足工业控制的要求,还必须能在系统出现故障时及时进行故障诊断和故障处理。故障自诊断功能是工业控制系统的智能化的一个重要标志,对于工业控制具有较高的意义和实用价值。
故障诊断一般有两种途径:故障树方法和专家系统方法。故障树方法利用系统的故障逻辑结构进行逻辑推理,由错误的输出找到可能的输入错误。这种方法比较适用于系统结构相对简单,各部分耦合少的情况。专家系统方法通过建立系统故障的知识库与推理机,计算机借助现场的数据利用知识库和推理机进行深入的逻辑推理,找出故障原因。这种方法适用于系统结构复杂,各部分耦合强的大型工业系统。
本文根据故障树推理与专家经验规则推理相结合的方法,以某火电厂输煤控制系统的设计为例,介绍了一种利用PLC和上位计算机进行故障诊断的PLC系统设计。
2 系统设计
故障诊断系统建立在基于PLC和上位计算机组成的控制系统上。PLC在故障诊断系统中的功能主要是完成输煤系统设备故障信号检测、预处理,转化存储并传输给上位计算机。上位计算机由于具有强大的科学计算功能,利用专家知识和专家库,完成从故障特征到故障原因的识别工作。并通过人机界面,给出故障定位,报告和解释故障诊断结果,并为操作员给出相应的排除故障的建议。
3 PLC程序设计
在进行故障诊断设计时,首先必须对整个系统可能会发生的故障进行分析,得到系统的故障层次结构,利用这种层次结构进行故障诊断部分的设计。以火电厂输煤控制系统的故障结构为例。为了描述简单,这里作了一定的简化。图1为系统的故障层次结构。
图1 系统故障层次结构
系统故障结构的层次性为故障诊断提供了一个合理的层次模型。在进行系统的PLC梯形图程序设计时,应充分考虑到故障结构的层次,合理安排逻辑流程。在引入故障输入点时应注意:必须将系统所有可能引起故障的检测点引入PLC,以便系统能及时进行故障处理;应在系统允许的条件下尽可能多的将底层的故障输入信息引入PLC的程序中,以便得到更多的故障检测信息为系统的故障自诊断提供服务。
(1) 故障点的记录
为了得到系统的故障情况实现系统的故障自诊断,PLC必须将所有故障检测点的状态反映给内部寄存器,图2是用来记录故障点的部分程序。
IR4.02是输入的IO节点,表示A侧皮带信号,当输煤系统使用A侧皮带正常运行时4.02的值为1,当4.02变为0时,说明A侧皮带信号出了故障,此时利用上升沿微分指令记录这次的信号跳变。这样这次事故就记录在IR31.00中。程序设计中将IR31作为记录底层故障信息的寄存器,由于内部寄存器IR有16位,所以能够记录16种不同的故障原因。如果有更多的故障需要记录,可以设置多个寄存器字。需要说明的是,有时引起故障的原因可能不止一个,往往一个故障会引起另一些故障的发生,因此还有关键的一点是程序要能记录先发生的故障。这也需要通过PLC编程实现,程序只对开始发生的故障敏感。
图2 记录故障的部分PLC程序
(2) 多次故障事件的记录
由于系统实际长时间的运行中,可能会出现多次故障,为了检修和维护方便,还需要PLC能够将多次故障事件记录下来。OMRON C200H型PLC的数据存储区(DM区)可以间接寻址,利用这一点,可以在DM区划出一定的区域,用来记录每次故障事件,包括故障类型和事件发生的时间(日期,小时,分钟,秒)。这一段DM区域可以循环记录,实际使用中记录了后50次故障的情况,这些记录是系统运行的重要资料,方便了运行人员了解设备情况,对其进行检修和维护。
(3) 模拟量故障的诊断
对于模拟量信号例如犁煤车,给煤车电机电流的故障诊断,首先利用模拟量模块,接收来自电流变送器的模拟信号,将其转换为数字信号,然后与整定值或系统允许的极限值比较,若在允许范围之内则表明对应的设备处于正常运行状态,如果实际值接近或达到极限值,则为不正常状态。判断故障发生与否的极限值根据实际系统相应的参数变化范围确定。
(4) 各种故障信息的串行通信
上位机通过串行通讯及时读取PLC的内部寄存器区的各种故障信息。利用PLC的RS232通信接口,可与上位计算机进行Host bbbb方式串行通信。通信时,上位计算机首先向PLC发出一帧命令帧,包括操作命令、寄存器类型、起始地址与要读取的寄存区数目等。PLC收到命令帧后会做出响应,如果没有错误则向上位计算机发出响应帧,响应帧中包含了上位机需要查询的寄存器值。
上位计算机通过读取数据寄存区的值来获取当前PLC的工作状况,同时上位计算机对PLC的控制也可通过对该区的写操作来完成。具体的通信实现可以参考相关资料,这里不作详细论述。
4 借鉴专家系统故障诊断方法的实现
系统故障结构的层次性为故障诊断提供了一个清晰的层次模型,可以利用基于模型的故障树法。但是在进行比较详尽的故障诊断以及系统故障存在耦合时,仅仅使用故障树法是不够的,必须借鉴专家系统的方法。
(1) 面向对象的“知识对象”, 大大提高了故障诊断的推理效率
在传统的专家系统中,知识被组织成知识库的形式,推理机进行推理时,要从知识库表示的所有空间中搜索所需的知识。这种方法有搜索空间大,推理效率低的缺点。“知识对象”的概念可以解决这一问题。“知识对象”是一个逻辑概念,它利用面向对象的方法,将知识源和黑板都表达为对象,在知识对象的内部封装了专家系统和推理机、解释器。当相应的知识对象被激活后,就在对象内部进行推理,大大提高了推理效率。根据系统的实际情况和故障推理的过程,在这里知识对象被具体化为故障节点。故障节点是进行诊断推理的基本单位,诊断信息在故障节点间层层传递,故障节点内部利用这些信息进行推理并终确定故障原因。
图3为系统部分故障节点的层次结构。图3可以看出,故障节点在结构上以虚线为分界线分为两个部分。上一部分层次清晰,在这一部分可以采用基于故障模型的故障树方法;下一部分由于结构复杂,耦合性较强,构造模型困难,可采用专家系统的推导方法。
图3 故障节点层次图
故障节点呈网状分布,1个节点可能有1个或多个父节点,也可能有1个或多个子节点。子节点和父节点之间的关系由故障层次和子节点故障层次来表示。如节点1的子节点故障层次为1,而节点2和节点3的故障层次为1,则节点2和节点3是节点1的子节点。故障层次和子节点故障层次不仅指明了故障节点结构上的层次,而且也隐含了推理规则。
(2) 对象类型与推理节点
对象类型表示该故障节点在故障推理中的作用,它可分为3类:根节点,叶节点,推理节点。根节点的故障由它的子节点产生,应到其子节点中去继续推理。叶节点是底层故障。叶节点没有子节点。推理节点是故障诊断规则为集中的节点,检测节点可以视为推理节点的子节点,它为推理节点的推理过程提供相关的信息。我们在推理节点并不是判断该节点是否存在故障,而是利用推理节点封装的规则库与推理机,结合检测节点提供的信息进行故障推理,找出故障原因。
(3) 故障节点的检测方式
地址段是节点的位置(本系统中是PLC中的寄存器)。数据段根据用户的需要可以为一个或几个,数据段中数据的定义与节点的性质有关。检测方式表明在该节点系统进行何种操作。主程序根据故障节点的检测方式选取相应的处理函数。该函数是检测手段与推理规则的结合,故可称之为检测/推理函数。一方面它可以检测故障节点本身的状态,另一方面使用推理机制进一步推断故障原因。性质类似的节点使用相同的检测/推理函数,利用地址段和数据段中的值加以区别。
(4) 各节点的注释段要有相应帮助信息
各节点的注释段不仅能记录故障的原因和维修方法,还可以记录其他的帮助信息。有时因系统的检测手段不完备,或规则不完全,推导过程要进行人机对话。这时候如果节点的注释段中有相应帮助信息,可以给用户以提示或指导用户进行操作,使推理能顺利进行。
本系统的故障诊断通过在上位计算机上用VC6.0开发的应用程序实现,集成在上位机监控系统中。在运行中给操作人员提示,指导用户进行操作,了解设备状态,判断故障发生原因,并可给出相应的维修建议。用户也可以对故障诊断进行指导和修正。
5 结束语
按以上故障诊断原理构造的故障诊断系统在火电厂输煤PLC控制系统中得到了应用。从实际运行来看,故障诊断系统能准确而迅速地判断出故障的原因,方便运行人员维护和检修,大大地提高了控制系统的稳定性和智能化水平。这种设计对类似的工业控制系统提供了一定的参考。
- 西门子SM1223 数字量输入输出模块 8输入/8输出继电器6ES7223-1QH32-0XB0
- 西门子SM1223 数字量输入输出模块16输入/16输出24V 6ES7223-1BL32-0XB0
- 西门子SM1223 数字量输入输出模块8输入/8输出24V 6ES7223-1BH32-0XB0
- 西门子SM1223 数字量输入输出模块 8输入24V8输出继电器6ES7223-1PH32-0XB0
- S7-200西门子6ES7223-1PL22-0XA8数字量输入输出PLC控制器扩展模块
- 西门子CPU控制器6ES7223-1PM22-0XA8
- 西门子CPU控制器6ES7223-1BM22-0XA8
- 江苏西门子EM223CN扩展模块6ES7223-1PL22-0XA8代理商
- 嘉兴西门子S7-200CN模块6ES7223-1PH22-0XA8一级代理
- 西门子PLC代理商6ES7223-1HF22-0XA8认准上海施承,诚信经营,品质好货