全国服务热线 15221406036

西门子6ES7253-1AA22-0XA0现货充足

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子6ES7253-1AA22-0XA0现货充足

 在程序中:

    S41是“送空管上升”过程的控制,X17 是送空管机构上升限位位置检测点,X30是棉卷夹盘左合到位检测点,X31是棉卷夹盘右合到位检测点,M131继电器是实现对送空管机构上升动作的过程控制,程序中行的指令是在S41步进程序步的控制中当送空管机构没有上升到上升限位点而且左右夹盘均没有处于闭合状态的条件下执行送空管机构上升的动作。程序中第二行的M132继电器实现对送空管机构下降的控制,第二行的指令是在S41步进程序步的控制中当送空管机构已上升到上升限位点时实现对送空管机构下降的控制。第三行程序的指令是当送空管机构已上升到上升限位点时程序进入S42步进程序段即夹盘上升1mm步进段。

    S42是“夹盘上升1mm”过程的控制,X16是送空管机构下降限位位置检测点,第四行程序实现的指令是当送空管机构复位时将送空管机构下降的动作复位;第五行程序实现的指令是通过Y7来控制相应的电磁阀以便实现棉卷夹盘上升1mm的控制;第六行中的X33是棉卷支架上升1mm和下降限位的检测点,第六行实现的指令是棉卷夹盘上升1mm后进入S43步进程序段。

    S43是“上升1mm后夹空管”过程的控制,第七行中的M129继电器实现松开棉卷夹盘的控制功能,第七行实现的指令是对松开棉卷夹盘动作进行复位。第八行中的M124继电器实现的是闭合棉卷夹盘的控制功能,本行的指令实现的是实现控制闭合棉卷夹盘的命令;第九行实现的指令是当左右棉卷夹盘闭合时进入S44步进程序段。

    S44是“棉卷支架上升、落空管”过程的控制,在第十行的程序中M513继电器实现的是运行状态下棉卷支架保持的的控制功能;第十一行中的M134继电器实现的是空管仓落空管命令;第十三行执行的是延时2秒后翻空管命令。第十四行中X25是弹簧板处空管检测点,本行指令执行的命令是弹簧板处有空管时进入S45程序步进段。

    S45是“换卷后启动”过程的控制,第十五行执行的是启动低速运行控制指令。

    PLC通过对各个自动动作的限位点的检测来实现对各个汽缸动作执行的协调,气缸是通过电磁阀控制的压缩空气来驱动的,具体动作执行的是否到位是通过传感器的检测来确定的。汽缸的运行速度则是通过调节节流阀来实现调节的。

    2.5 控制电磁阀的人机界面程序设计概述

    在HXFA368型条并卷联合机上为了便捷的实现对各种自动动作的分立调试在此应用了台达DOP-AE10THTD型人机界面。通过人机界面可以方便的实现操作人员对各个电磁阀的实时控制,大大的方便了对各个自动动作的调试。

    2.5.1 HXFA368型条并卷联合机上通过人机界面控制和调试电磁阀执行动作的界面设计

图3 界面设计

    图3 界面设计


    在此界面中通过对打开棉卷夹盘,推棉卷,翻空管一次等触摸键的操作可以实现对相应电磁阀的控制,电磁阀通过对压缩空气的控制来实现压缩空气对气缸活塞的驱动进而实现相应的汽缸动作。在设备的调试过程中调试人员先通过调试设定界面中的触摸键来控制单步动作的执行,然后根据实际操作的需要来调整节流阀,以此实现对气缸运行速度的调节。

3 HXFA368型条并卷联合机气动控制系统中常见故障及解决方法

    3.1 电磁阀故障

    电磁阀做为一种执行元件受控于PLC控制器,由于棉纺织设备长时间处于24小时运作状态电磁阀长期动作易造成电磁阀吸合不到位或者彻底损坏两种情况,电磁阀吸合不到位在HXFA368型条并卷联合机上体现出来的状态是间歇性动作故障,进而引起设备间歇性故障停车,在此种状况下当对单个电磁阀进行检测时又不好判断出阀体埙坏,需要根据具体情况进行综合判断;在电磁阀彻底埙坏的情况下体现出来的故障情况是某个动作不执行,在此情况下可以根据实际情况更换相应的电磁阀来解决问题。

    3.2 传感器故障

    在设备自动动作执行的过程中需要用传感器对气缸动作的执行进行限位检测以便PLC对设备的自动动作进行逻辑上的协调控制,检测传感器的选用一般有磁感应传感器和接近开关两种类型,检测传感器一旦损坏就会导致自动动作停留在某个动作位停止而不继续往下执行下一步动作。遇到这种故障情况时就应当根据自动动作执行的情况来查找个并更换相应受损的传感器。

    3.3 气缸故障

    作为一种重要的执行部件气缸通常会因为长时间的运作而导致气缸内部的活塞出现漏气现象,这种故障情况下气缸所表现出的现象是在压缩空气送入气缸后气缸不动作或者动作力度及行程达不到相应的要求,遇到这种情况时就应当对损坏的气缸进行维修或者更换气缸。

4 结论语

    HXFA368型条并卷联合机是一种自动化程度比较高的棉纺织设备,该设备是为棉纺织企业前纺工段中的精梳工序做准备的一种高效能棉纺设备,该型纺机设备经过多年来的改进tisheng总体性能和效率已经完全可以替代国外同类纺机设备如瑞士立达公司生产的E32型和E35型条并卷联合机,而其价位却仅为后者的三分之一左右,为国家节约了大量外汇。目前HXFA368型条并卷联合机已经广泛的应用在山东、河北、河南、陕西、甘肃以及湖南等多数棉纺织企业,其优良的性能已经得到了棉纺织企业用户的。

1 引言

    随着科技的飞速发展,纺织机械设备制造业也迎来了革命性的发展,当前纺机设备的发展特点主要体现在:触摸式人机界面(HMI),可编程逻辑控制器(PLC)以及各种气动控制元件的广泛应用;目前不断tigao纺机设备的自动化程度以减轻操作者的劳动强度和tigao纺织厂的生产效率成为纺织机械生产厂家的一个重要的研发设计宗旨。而自动化动作的实现则普遍需要通过用PLC来控制电磁阀以及气缸等执行部件来实现。条并卷联合机是前纺中精梳准备工艺中生产效率高的一种设备,HXFA368型条并卷联合机的自动化动作的实现需要通过压缩空气驱动气缸来实现,而压缩空气则是由PLC控制电磁阀来实现控制的。HXFA368型条并卷联合机采用了亚德客的电磁阀和气缸等气动元件来实现自动动作的执行。

2 应用设计

    2.1 HXFA368型条并卷联合机的气动控制系统概述

    一个典型的气动系统是由方向控制阀、气动执行元件、各种气动辅助元件及气源净化元件所组成。 HXFA368型条并卷联合机选用亚德客的电磁阀、气缸、压力表以及管接头做为标准配置,主气源进气处先通过三连件后再进入主气路,各个电磁阀用来作为相应动作单元上压缩空气通断的控制,电磁阀则由PLC控制器来实现逻辑上的控制,气缸的选用根据具体机械动作的实现来确定,气缸运动的速度根据相应的节流阀来进行调节。

    2.2 HXFA368型条并卷联合机的动作流程概述

图1 HXFA368型条并卷联合机的部分动作流程图

    图1 HXFA368型条并卷联合机的部分动作流程图


    HXFA368型条并卷联合机在当设定的棉网长度到时主电机转为低速,电磁离合器分、扯断棉网,主电机停,此时棉架快速上升,上升到位时打开夹盘,棉架暂停在高位,开前门,前门打开后推棉卷,棉卷推出后推卷机构返回,推卷机构返回后关闭前门,前门关闭后棉卷架快速下降到低位,然后再进入上空管的步骤;棉卷推出后执行翻棉卷到小车的动作,翻棉卷机构返回后小车前进一步,推小车机构返回。

    HXFA368型条并卷联合机各种动作的实现均是通过气动执行元件来实现的,在气动控制系统中将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动的元件,称为气动执行元件。在条并卷联合机中是采用电磁阀来控制气缸来执行动作的,而电磁阀的动作则由PLC来控制,在本设备的控制系统中采用了中达电通有限公司的DVP60ES型PLC来控制整个系统工作;电磁阀及气缸则均选用亚德客有限公司的产品。

    2.3 HXFA368型条并卷联合机的自动动作的实现

    HXFA368型条并卷联合机具有机电一体化程度较高的特点,其主动力由11KW的变频电机通过变频来实现变频调速控制,各个分步动作的实现主要由电磁阀控制压缩空气驱动气缸来实现动作控制,上下空管、翻棉卷、棉卷支架上升下降、推棉卷、小车前进、前防护门开合、空管仓落空管以及送空管机构上升下降等动作都对应着相应的电磁阀和气缸,而整个动作的协调运作则有PLC控制器来实现控制功能,在此只做一个简单的概述。

    2.4 控制电磁阀的PLC程序设计概述

    HXFA368型条并卷联合机上的各种自动动作的实现是通过用PLC控制电磁阀来实现的,下面是一段对部分动作进行控制的步进程序。

图2 步进程序

    图2 步进程序

对于由伺服电机带动的旋转物体进行位置控制,通常采用套轴式的电磁旋转变压器加复杂的处理电路来实现角度的编码,再由角度编码进行位置的闭环控制。上述的位置控制多用于测角精度要求高的场合中,设备构成复杂、成本较高。在某些实际应用中,需要进行较为简单的位置定位。比如在一个由伺服电机带动的机械机构需要在360°的旋转范围内进行4个或多个档位的定位,实际应用中像建筑行业中控制阀门的大小来对给水量、水泥量、沙石量进行控制或jungong工程控制,这样的定位控制精度要求不高,采用上述的方法进行位置控制显然不够经济,成本过高。

    PLC(Programmable Logic Controller)在工业控制中应用广泛。其高可靠性、高稳定性、友好的编程环境以及辅以触摸式人机界面,使得各种工业控制更方便直观、经济可靠。这里主要阐述了基于S7-200PLC实现位置控制方法。

1 系统硬件设计

    该系统是以PLC控制器为核心的位置控制系统,包含伺服电机、光电编码器、操作及显示屏、上位计算机、伺服电机控制电路和状态返回电路。其硬件总体结构框图如图1所示。

 系统硬件总体结构框图

图1 系统硬件总体结构框图

    1.1 S7-200 PLC

    该系统设计核心部件采用西门子S7-200系列的PLC,该系列PLC功能丰富,具有多种功能模块,可方便通过人机界面对设备进行操作和监视其状态,高版本的PLC主机拥有2个通讯端口,在使用人机界面对设备进行操作的同时还可通过RS-485接口和计算机实现逻辑运算及状态管理,对设备进行远程控制和监视。该系统使用S7-200 PLC的一个重要的功能:高速可逆计数。光电编码器和伺服电机同轴连接,伺服电机旋转带动光电编码器产生连续的脉冲串,PLC通过输入点读取光电编码器产生的脉冲,实现高速可逆计数。例如设置高、中、低3个给水量档位并进行控制。在调试阶段应先驱动伺服电机进行3个给水量的位置标定,也就是说,高、中、低3个档位分别对应唯一的脉冲数。应该注意的是,由于采用的是增量式光电编码器,也就是说,当编码器掉电后并不能将当前的脉冲数保存。所以在旋转机构上还要设置2个限位开关,一来保护机械结构;二来把逆向的限位开关的位置定为零位,这样相对于这个零位的高、中、低3个给水档位从光电编码器读到的脉冲数即为这3个档位的位置。这3个位置可通过PLC编程对其控制。图2给出S7-200 PLC高速可逆计数器的时序图。

 S7 -200 PLC告诉计数器时序图

图2 S7 -200 PLC告诉计数器时序图

    1.2 光电编码器

    光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。图3为在实际项目中采用光电编码器的时序图,从图中可以看出此光电编码器的相位判断角度为90°±45°;另外图中标识的CW(顺时针)和CCW(逆时针)可以根据实际应用在PLC程序中自行定义。图4为在实际项目中采用光电编码器的内部电路和外部引线图。

2 系统软件设计

    2.1 设计要点

    该系统软件设计的重点为:1)准确配置高速计数器;2)位置控制器的允差设计,允差的选择应尽量小以tigao伺服系统的控制精度,在满足系统定位精度的前提下,允差的设计上还需要考虑于机械结构定位的分辨率,以免设置值过小机械结构控制不到位而引起驱动电机反复转动调节,往往需要现场标定;3)初始位置的jingque标定,需要注意的是初次标定各档位位置时应使用手动控制方式,并且要将机械限位开关状态接入PLC。由于采用增量式光电编码器,计数器当前值要存在PLC的掉电可保存寄存器MDl4中。

    2.2 程序设计

    在程序中首先需要将高速计数器配置为A/B相正交输入,4倍计数速率,增计数,并使能高速计数器,然后将标定好的各档位位置填入相应的地址中,并且设置允差为两个脉冲,也就是说各档位的脉冲数加减2即为相应的到位。伺服系统传动装置的间隙是多样性的,并且对伺服控制的性能有影响,设置允差的目的是为了消除由于伺服传动间隙引起的系统不稳定,从而准确定位。位置定位程序的流程如图5所示。   在程序设计时除顺、逆限位和顺转、逆转的互锁程序外,重点在于如何用PLC实现多点重复定位。主要设计程序如下:

 光电编码时序图

图3 光电编码时序图

 光电码盘的内部电路和外部引线

图4 光电码盘的内部电路和外部引线

3 工程应用情况

    这种设计方法被利用在某军用雷达工程的衰减器控制的4位置定位系统中,系统要求驱动机械部件在0°~360°内的4个位置往返定位,定位精度要求O.1°。在具体的设计中驱动电机选用型号为55TYD02的交流电机,编码机构选用型号为OMRON E6B2的相对式光电码盘。位置的行程范围360°对应于8 400个脉冲,则使用S7-200 PLC高速计数器读入的位置分辨率为360°/8400=0.043°;根据机械结构实际标定位置允差值设置为2个脉冲,此定位系统的控制精度可达到0.86°,满足系统定位精度0.1°的要求,电机正向或反向运转一次到位,快速准确。

4 结束语

    PLC适用于比较恶劣的工业环境,通过其通讯口和上位计算机实现通讯,可以使操作人员在安全的环境下实现远程控制;光电编码器构造原理简单,机械寿命可达几万小时以上,抗干扰能力强。由两者为核心构成的硬件电路实现位置控制方法适用于具有多个设置点重复定位的机械旋转控制设备,完全满足一般的工业控制要求。这种设计原理清晰、硬件需求明确、易于实现、调试维护方便,具有很好实用和适用性。上述的位置控制方法已经应用于某军用雷达工程的衰减器控制中,其控制精度可达到0.86°,满足系统定位精度0.1°的要求,设备运行稳定可靠,效果良好。

   3.2 系统工作原理

    在软冗余系统进行工作时,A,B控制站(处理器,通讯、I/O)独立运行,由主站的PLC掌握对ET200从站中的I/O控制权。A,B站中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant back-up)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。软冗余系统中PLC内部程序运行过程如图3所示。

软冗余系统PLC内部运行图

图3 软冗余系统PLC内部运行图

    在主控制站发生故障时,主备控制站的切换时间=故障诊断检测时间+同步数据传输时间+DP从站切换时间。如果CPU的故障是停机或断电,故障诊断为大约100~1 000 ms。数据同步所需时间取决于同步数据量的大小和同步所采用的网络方式,目前普遍采用Ethernet网方式。以CPU 315-2DP为例,同步1000B的数据所需时间大约为200~300 ms。还有2个DP从站的切换时间在70 ms左右。无论控制程序循环扫描到哪里,当前激活的系统(即主系统)随时都会接收并处理报警,但在主系统A与备用系统B进行切换过程中产生的报警存在被丢失的可能。

4 硬件选型

    无为县城污水处理工程变配电间站软冗余系统选用SIMATIC S7-300系列PLC,中央处理器为CPU315-2DP,编程软件为Step7 V5.2。其中PLC本体与远程I/O通讯为PROFIBUS协议的串口通讯,PLC与计算机采用工业以太网,并以工业以太网作为冗余网络。其PLC模块选型如下:

    (1)电源模块6ES7307-1EA00-OAA0两块给CPU供电;

    (2)中央处理器CPU315-2DP 6ES7315-2AGl00AB0两块,工作存储器512 KB;

    (3)通讯模块6GK7343-1EX20-0XE0两块与计算机进行网络通讯并进行两个CPU间的冗余通讯;

    (4)接口模块6ES7153-2AA02-0XBO两块进行PROFIBUS远程I/O和系统间的冗余通讯;

    (5)电源模块6EPl333-2AA00两块给ET200供电;

    (6)DI数字量输入模块6ES7321-1BL00-0AA0六块采集现场设备的开停、运行及故障状态;

    (7)DO数字量输出模块6ES7322-1BL00-0AA0三块控制现场设备的启停;

    (8)AI模拟量输入模块6ES733l-7KF02-0ABO四块采集现场的液位、压力、liuliang、PH/T、浊度以及风机和加药泵的频率信号;

    (9)A0模拟量输出模块6ES7332-5HFOO-OABO两块通过程序的PID自动控制调节风机和加药装置的频率。

5 系统检测结果

    变配电间站S7-300软冗余系统投入运行后系统工作正常。在工程调试时,技术人员通过设定控制字实现手动的主备系统切换。测试时没有出现主从系统切换时中断,切换时一切控制正常,包括控制继电器不会断开、模拟量输出控制变频器转速不会丢失等。还有测试时PROFIBUS总线传输正常,没有掉落模块的情况出现。这表明西门子S7-300软冗余系统应用于对主备系统切换时间要求不高的中小型污水处理控制系统中是完全可行的。

6 结语

    该系统于2006年9月投入使用,运行顺利,用户对选择软冗余系统非常满意。目前本系统已经成功推广到安徽阜阳、安庆、淮南和宿州等地的污水处理系统中,用户反映非常良好。通过上述项目,证实PLC软冗余系统完全可以满足中小型污水处理控制系统的技术要求,基本实现无忧切换。PLC软冗余系统在生产中的实际使用,为企业带来了效益,相信也为这种冗余系统广泛推广到其他行业应用提供了一定的参考价值。

引言

    随着我国经济发展和城镇化进程的加快,中小城市污水量呈现逐年增加趋势,为减少污水收集管网的工程建设投资,中小城市污水处理设施呈现分散、规模小等特点。受经济发展水平、处理要求、运营管理经验和水平等影响,大型污水处理控制系统难以适应这些中小污水处理工程的建设要求,寻找适合城市中、小污水厂的污水处理控制系统显得十分重要。本文介绍西门子S7-300 PLC软冗余系统在安徽无为县城污水处理厂的成功应用,该系统既保证了系统的可靠性、稳定性和实时性,又降低了工程建设成本。

1 系统介绍

    安徽无为县城污水处理厂是一座由安徽现代污水处理有限公司按BOT方式(建设-运行-移交)筹资建设的的城市污水处理厂,处理规模一期40000m3/d,厂址位于无为县城东北部陈家村西侧,占地面积约3.34公顷。无为污水处理厂主要处理来自县城东北区约13万人的生活污水及工业废水,采用A/A/O工艺,主要构筑物包括粗格栅及进水泵房、细格栅及旋流沉沙池、生物反应池、二沉池配水井及污泥泵房、二沉池、紫外线消毒渠和储泥池等,其流程图如图1所示。设计要求出水水质达到GBl8918-2002国家一级B排放标准,污水处理过程中产生的污泥采用浓缩脱水处理后外运至垃圾填埋场填埋。

无为污水处理厂一期工艺流程图

图1 无为污水处理厂一期工艺流程图

    无为污水处理厂控制系统设1个监控中心(中控室)、3个现场PLC站(模拟屏站PLC01、变配电间站PLC02、污泥脱水间PLC03站)。其中变配电间站为重要,主要控制tisheng泵站、格栅井、沉沙池、氧化沟、二沉池、回流泵站、剩余污泥泵站、贮泥池的自动运行。关键控制对象是氧化沟中的含氧量和回流污泥量,以保证维持微生物的生存环境,达到去除原污水中污染物的目的。

2 选型比较

    对于变配电间站控制系统的选型,以前类似工程大多采用A-B公司的ControlLogix系列或是西门子S7-400系列的硬件冗余系统,具有稳定性好、切换速度快等优点,但造价相对昂贵,是国内大型污水处理控制系统的优先选择。目前中小城市的污水项目很多为BOT项目且对控制系统切换时间要求条件不是太高,所以要求控制系统选型时既要保证性能,又要降低成本。据德国西门子公司提供的资料,硬件双机冗余系统的价格比软冗余系统高40%左右,但可用率只tigaoO.08%。在国外大部分同等规模的污水处理厂中也未采用双机硬件冗余系统,所以需要对控制系统的技术有更深入的了解,避免在设计选型上照抄、照搬。通过对西门子硬件冗余和软件冗余系统的深入分析和性能比较,后决定选用价格相对便宜而性能又比较稳定的软冗余系统。

3 软冗余系统结构和原理

    控制系统冗余常见方式是中央处理器冗余、I/O冗余和通讯冗余。中央处理器冗余是在主处理器失效时,备用处理器自动投入运行从而接管控制。在控制权的交互方式上又分为硬件冗余和软件冗余两种。硬件冗余是采用硬件方式进行切换,除成对的使用中央处理器外,还需专用的热备模块负责检测处理器,一旦发现主处理器失效,马上将系统控制权交给备用处理器。硬件冗余采用光纤通讯,通讯速度快,系统稳定,切换时间更短,但是成本也高。软件冗余方式只需要成对的处理器,用软件编程的方式进行处理器的切换,组成比较经济,构成十分灵活,但程序处理需要一定的时间,对于时钟同步及切换时间要求不是十分严格的场合,选用软件冗余方式是非常经济有效的。

    3.1 系统结构

    软冗余系统的基本结构如图2所示。

软冗余系统的基本结构

图2 软冗余系统的基本结构

    西门子S7-300 PLC软冗余系统由A和B两套PLC控制站组成。开始时A站为主,B站为备用,当主站A中的任何一个组件出错,控制任务会自动切换到备用站B当中执行,这时,B站为主,A站为备用,这种切换过程是包括电源、CPU、通讯电缆和IMl53接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换。这种手动切换功能对控制系统的软硬件调整、更换和扩容非常有用的。


联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com