全国服务热线 15221406036

西门子6ES7216-2AD23-0XB8千万库存

更新时间:2024-05-08 07:10:00
价格:请来电询价
联系电话:
联系手机: 15221406036
联系人:聂航
让卖家联系我
详细介绍

西门子6ES7216-2AD23-0XB8千万库存

 PLC和DCS作为自动控制领域的重要控制设施,越来越广泛的应用在各种生产控制现场中。在制造业这个生产大系统中,它们已经成为了不可或缺的控制工具。针对PLC和DCS系统的应用,我们常常有这样的疑惑:PLC与DCS之间有什么区别和联系?使用时到底哪些方面是需要我们特别注意的?现阶段制约其技术发展的瓶颈又是什么?对此,e-works与从事多年PLC和DCS应用研究工作的华南理工大学副教授杨红进行了交流,探寻PLC和DCS的发展之谜。

      首先,工欲善其事,必先利其器。对于PLC和DCS之间的区别我们必须有个清晰的界定,别看它们同为控制工具,实际功能却大相径庭。所谓分散控制系统(DCS)是融计算机技术、控制技术、通信技术、CRT技术为一体,它主要是针对生产过程进行监视、控制、操作和管理的一种控制系统。而PLC叫可编程逻辑控制器。DCS和PLC用相似的地方,就是软件组态的基本配置,但是DCS更强大。例如数据库生成,历史数据生成,图形生成,报表生成和控制组态等。PLC控制的对象一般都比较简单,DCS则可以控制企业的全部设备,成为中央枢纽。在生产控制的战场上它们一为将才,一为帅才,相互之间不存在谁控制谁。PLC可以给信号DCS,反过来DCS也可以给信号于PLC,两者互相配合,其主从关系主要取决于对设备的要求。 

      PLC的发展十分迅速,随之也从技术上带来了各种挑战,谈到如何突破现阶段PLC的发展瓶颈时,杨教授提出我们应该放宽眼界,思考如何实现一个国家层面的、通用的、共性的、全面的PLC平台?一个PLC通用平台,无论是作为信息化产品、控制技术产品还是两化融合的骨干产品,都应该被重点关注。平台包括研发/设计、制造、应用三部分,并给出通用PLC平台具体产品目标要求(系统硬件、软件)、功能要求(硬件、软件的通用性技术指标,性能的先进性与可靠性指标)。 

      回顾DCS的发展之路,各个技术阶段的划分很重要的一点就是依仗微处理器的位数增加,有人甚至提出微处理器更新换代一次,DCS技术就会升一级。对此杨教授认为DCS是计算机技术、控制技术和网络技术高度结合的产物。DCS通常采用若干个控制器(过程站)对一个生产过程中的众多控制点进行控制,各控制器间通过网络连接并可进行数据交换。采用计算机操作站,通过网络与控制器连接,收集生产数据,传达操作指令。因此,DCS技术必然随着微处理器的技术不断更新换代以顺应新系统的需要。 

      针对硝烟四起的PLC和DCS市场,国外强企一直占主导地位,本土产品举步维艰,针对此种现状,杨教授结合上述所说,对国内PLC市场提出下列建议: 

      ,建设一个国家层面的、通用的、共性的、全面的PLC平台。 

      第二,从市场细分着手,以软件带动硬件发展。 

      第三,共性技术的开发及所有权应归国家,推广方式可以借鉴国外经验。 

      后,未来的PLC和DCS市场会朝着什么方向发展,杨教授做出这样的预测:长期以来,PLC始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与DCS和工业PC形成了三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是工业PC所带来的冲击。在未来的较长时间里,这种格局将继续保持下去。对于DCS系统来说,小型化、多样化、PC化和开放性是未来发展的主要方向。目前小型DCS所占有的市场,已逐步与PLC、工业PC、FCS共享。今后小型DCS可能首先与这三种系统融合,而且“软DCS”技术将首先在小型DCS中得到发展。PC-based控制将更加广泛地应用于中小规模的过程控制中,各DCS厂商也将纷纷推出基于工业PC的小型DCS系统。开放性的DCS系统将同时向上和向下双向延伸,使来自生产过程的现场数据在整个企业内部自由流动,实现信息技术与控制技术的无缝连接,向着测控管一体化方向发展。

(1)故障显示 
      ①设计时可使每一个故障点均有信号表示。优点是直观便于检查,缺点是程序复杂且输出单元占用较多,投资较大; 
      ②设计时也可将所有故障点均由一个信号表示。优点是节约成本,减少了对输出单元的占有,缺点是具体故障回路不能直接判断出; 
      ③设计时还可将性质类似的一组故障点设成一个输出信号表示。 
      以上三种方案各有利弊,在条件允许、并且每个回路均很重要,要求必须快速准确判断出故障点时采用种方案较好;一般情况下采用第三种方案比较好,由于故障分类报警显示,就可直接判断出故障性质,知道会对设备或工业过程造成何种影响,可立即采取相应措施加以处理,同时再结合其它现象、因素、另一组或几组报警条件将具体故障点从此类中划分出来。整个PLC内部程序、外部输出点及接线增加不多,性能价格比较高。
      (2)输入、输出故障的排除
      一般PLC均有LED指示灯可以帮助检查故障是否由外部设备引起。不论在模拟调试还是实际应用中,若系统某回路不能按照要求动作,首先应检查PLC输入开关电接触点是否可靠(一般可通过查看输入LED指示灯或直接测量输入端),若输入信号未能传到PLC,则应去检查输入对应的外部回路;若输入信号已经采集到,则再看PLC是否有相应输出指示,若没有,则是内部程序问题或输出LED指示灯问题;若输出信号已确信发出,则应去检查外部输出回路(从PLC输出往后检查)。 
      在输出回路中,由于短路或其它原因造成PLC输出点在内部粘滞,只需将其接线换至另一予留的空接线点上,同时修改相应程序,将原输出标号改为新地址号即可。 
      PLC虽然适合工业现场,使用中也应注意尽量避免直接震动和冲击、阳光直射、油雾、雨淋等;不要在有腐蚀性气体、灰尘过多、发热体附近应用;避免导电性杂物进入控制器。

  4.2 电源部分的抗干扰设计

      电源波动造成的电压畸变或毛刺,将对PLC及I/O模块产生不良影响。据统计分析,PLC系统的干扰中有70%是从电源耦合进来的。为了抑制干扰, PLC供电系统可采用如下方式,控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。当某一部分电源出了故障时,而不会影响其他部分,如输入、输出供电中断时,控制器仍能继续供电,提高了系统的可靠性。

      4.3 输入输出信号的抗干扰设计

      为了防止输入、输出信号受到干扰,应选用绝缘型I/O模块。

      4.3.1  输入信号的抗干扰设计

      输入信号的输入线之间的差模干扰可以利用输入模块滤波来减小干扰,而输入线与大地间的共模干扰可通过控制器的接地来抑制。在输入端有感性负载时,为了防止电路信号突变而产生感应电势的影响,可采用硬件的可靠性容错和容差设计技术,对于交流输入信号,可在负载两端并联电容C和电阻R,对于直流输入信号,可并接续流二极管D。一般负载容量在10VA以下时,应选C为0.1μF,R为120 ,当负载容量在10VA以上时,应选C为0.47μF,R为47 。具体电路如图2所示:

 

输入信号的抗干扰设计
图2 输入信号的抗干扰设计


      4.3.2 输出电路的抗干扰设计

      对于PLC系统为开关量输出,可有继电器输出、晶闸管输出、晶体管输出三种形式。具体选择要根据负载要求来决定。若负载超过了PLC的输出能力,应外接继电器或接触器,才可正常工作。

      PLC输出端子若接有感性负载,输出信号由OFF变为ON或从ON变为OFF时都会有某些电量的突变而可能产生干扰。在设计时应采取相应的保护措施,以保护PLC的输出触点,如图3所示。对于直流负载,通常是在线圈两端并联续流二极管D,二极管应尽可能靠近负载,二极管可为1A的管子。对于交流负载,应在线圈两端并联RC吸收电路,根据负载容量,电容可取0.1μF~0.47μF,电阻可取47Ω~120Ω,且RC尽可能靠近负载。

      4.4 外部配线的抗干扰设计

      外部配线之间存在着互感和分布电容,进行信号传送时会产生窜扰。为了防止或减少外部配线的干扰,交流输入、输出信号与直流输入、输出信号应分别使用各自的电缆。集成电路或晶体管设备的输入、输出信号线,要使用屏蔽电缆,屏蔽电缆在输入、输出侧要悬空,而在控制器侧要接地。配线时在30米以下的短距离,直流和交流输入、输出信号线好不要使用同一电缆,如果要走同一配线管时,输入信号要使用屏蔽电缆。30米~300米距离的配线时,直流和交流输入、输出信号线要分别使用各自的电缆,并且输入信号线一定要用屏蔽线。对于300米以上长距离配线时,则可用中间继电器转换信号,或使用远程I/O通道。对于控制器的接地线要与电源线或动力线分开,输入、输出信号线要与高电压、大电流的动力线分开配线。

      4.5  软件抗干扰设计

      尽管硬件抗干扰可滤除大部分干扰信号,但因干扰信号产生的原因很复杂。且具有很大的随机性,很难保证系统完全不受干扰。因此往往在硬件抗干扰措施的基础上.采取软件抗干扰技术加以补充,作为硬件措施的辅助手段。软件抗干扰方法没计简单、修改灵活、耗费资源少,在PLC测控系统中同样获得了广泛的应用。对于PLC测控装置,其数据输入、输出、存储等系统属于弱电系统,如果工作环境中存在干扰,就有可能使数据受干扰而破坏,从而造成数据误差、控制状态失灵、程序状态和某些器件的工作状态被改变,严重时会使系统程序破坏。一般采用指令重复执行和数字滤波两种方法。


图3  PLC输出触点的保护


      4.5.1 指令重复执行

      指令重复执行就是根据需要使作用相同的指令重复执行多次,一般适用于开关量或数字量输入,输出的抗干扰。在采集某些开关量或数字量时,可重复采集多次,直到连续两次或两次以上的采集结果完全相同时才视为有效。若多次采集后,信号总是变化不定,可停止采集,发出报警信号。在满足实时性要求的前提 ,如果在各次采集数守信号之间插入一段延时,数据的可靠性会更高。如果在系统实时性要求不是很高的情况下,其指令重复周期尽可能长些。

      4.5.2 数字滤波

      在某些信号的采集过程中,由于存在随机干扰而可能使被测信号的随机误差加大。针对这种情况,可以采用数字滤波技术。该方法具有可靠性高和稳定性好的特点,广泛应用于工业计算机测控系统中。此外,数字滤波的常用方法还有:程序判断滤波法、中值滤波法、算术平均滤波法、递推平均滤波法等。

5 结束语

      随着PLC应用范围的逐渐扩大,加之系统恶劣的工作环境,它所要克服的干扰就会越来越多,尽管PLC本机的可靠度很高。但是在系统设计和安装时,仍必须对环境作全面的分析,确定干扰的性质,采取相应的抗干扰措施,以保证系统长期稳定的工作

1 前 言

      工业的高速发展对控制系统的依赖性越来越强。分散型控制系统(DCS)、可编程控制器(PLC)、现场总线控制系统(FCS)、工业控制机(IPC)以及各种测量控制仪表已是构成工业自动化的主要硬件设施。随着微电子技术的发展和控制系统集成化程度的提高,大规模集成芯片内单位面积的元件数越来越多,所传递的信号电流也越来越小,系统的供电电压也越来越低,现已降到5V、3V乃至1.8V。因此,芯片对外界的噪声也越趋敏感,所以显示出来的抗干扰能力也就很低。再则,相对于其它的电子信息系统,控制系统不但系统复杂,设备多,输入/输出(I/O)端口多,特别是外部的连接电缆又多又长,这类似于拾取噪声的高效天线,给噪声的耦合提供了充分的条件,使得各种噪声容易侵入控制系统。

      PLC具有编程简单、通用性好、功能强、易于扩展等优点,特别是采用了高集成度的微电子器件,具有很高的可靠性,能较强的适应恶劣的工业环境,已被广泛应用于工业控制领域中。现在工业生产线控制系统中所使用的PLC,主要是集中安装在主控室,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中,很容易被周围干扰源干扰而引起控制系统产生误动作,影响系统的正常工作,因此必须重视系统的抗干扰设计。为防止干扰,可以采用硬件和软件相结合的抗干扰方法。

2  PLC系统的基本组成结构

      可编程控制器硬件系统由PLC、功能I/O单元和外部设备组成,如图1所示。其中PLC由CPU、存储器、基本I/O模块、I/O扩展接口、外设接口和电源等部分组成,各部分之间由内部系统总线连接。
 

1 PLC系统的基本组成
图1 PLC系统的基本组成结构


3  影响PLC控制系统稳定的干扰类型

      3.1 空间辐射干扰


      空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰。电气设备、电子设备的高密度使用,使空间电磁波污染越来越严重,这些干扰源产生的辐射波频率范围广,且无规律。空间辐射干扰以电磁感应的方式通过检测系统的壳体、导线等形成接收电路,造成对系统的干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。

      3.2 电源的干扰

    PLC系统一般由工业用电网络供电。工业系统中的某些大设备的启动、停机等,可能引起电源过压、欠压、浪涌、下陷及产生尖峰干扰,这些电压噪声均会通过电源内阻耦合到PLC系统的电路,给系统造成极大的危害。

      3.3 来自信号传输线上的干扰

      除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。

      3.4 数字电路引起的干扰

      数字集成电路引出的直流电流虽然只有mA级,但是当电路处在高速开关时,就会形成较大的干扰。例如,TTL门电路在导通状态下从直流电源引出5mA左右的电流,截至状态下则为lmA,在5ns的时间内其电流变化为4mA,如果在配电线上具有0.5μH的电感,当这个门电路改变状态时,配电线上产生的噪声电压为:

      U=L×di/dt=0.5×10-6×4×10-3 /5×10-9=0.4V

      如果把这个数值乘上典型系统的大量门的数值,虽然这种门电路的供电电压仅为5V,但所引起的干扰噪声将是非常严重的。

      在处理脉冲数字电路时,对脉冲中包含的频谱应有一个粗略概念,如果脉冲上升时间t已知,可用近似公式求出其等效高频率:fmax=1/2πt1.4 PLC系统内部产生的干扰。

4  PLC系统中的抗干扰设计

      4.1接地抗干扰设计


      接地在消除干扰上起很大的作用,良好的接地是保证PLC可靠工作的重要条件之一,可以避免偶然发生的电压冲击危害。为了抑制附加在电源及输入、输出端的干扰,应给PLC接以专用地线,接地线与动力设备(如电动机)的接地点应分开,若达不到此要求,则可与其它设备公共接地,严禁与其它设备串联接地。接地电阻要小于5Ω,接地线要粗,面积要大于2平方毫米,而且接地点好靠近PLC装置,其间的距离要小于50米,接地线应避开强电回路,若无法避开时,应垂直相交,缩短平行走线的长度。

(2)信号选择电路

      选择16通道的模拟开关CD4067构成信号选择电路,A、B、C、D、INH接到芯片组的P1.0-P1.4引脚,做为模拟开关的通道选择控制信号。OUT引脚接到芯片组的AIN0,即个AD转换通道。

信号选择电路
图4 信号选择电路图

 2、软件开发

      嵌入式PLC是基于Cygnal公司的C8051f040芯片开发的,所以二次程序的开发使用51汇编语言。开发选择的编译器是KEIL C51,因为它可以生成我们所需要的.HEX文件。

      内核留出了七个用户嵌入程序接口,我们只需要充分理解各个接口的功能就可了进行二次开发了,需要熟悉如下内容:a、内核功能b、内核结构c、内核任务管理d、内核存储空间分配。由于系统软件中已经加入了232通信、485通信和CAN通信的功能,所以16路模拟量PLC的二次驱动软件的开发主要集中在模拟量的AD转换和PLC资源区中AD值的实时刷新上。

    (1)程序规划

    T4中断:完成AD转换和16个通道的切换程序

    USER_SCAN:PLC资源区中AD值的刷新。

    AD转换过程如下:每一通道连续采样16次,采样完后得到累加和,然后启动下一通道的AD转换。

    PLC资源区中AD值的刷新过程如下:在梯形图扫描周期结束时进行,把各路AD值的累加和求平均值后放入PLC的资源区的对应位置处。

    (2)程序代码

    INIT_AD ;AD初始化
    MOV  SFRPAGE,  #ADC0_PAGE
    MOV  REF0CN,  #07H ;内部参考电压输出到VERF;启动内部温度传感器
    MOV  AMX0CF,  #00H ;单极性输入
    MOV  ADC0CF,  #0B8H ;D7--D3=SYSCLK/采样时钟-1
         ;采样转换时钟=1US
         ;D2--D0=GAIN
         ;000 GAIN=1
    MOV  ADC0CN,  #90H ;启动AD采样
    MOV  AD_CHANNEL, #00H ;AD通道号,初值为0
    MOV  AD_COUNT,  #00H ;16次采样次数计数。初值为0
    RET
    SAMPLE_AD         ;AD采样开始
    MOV  SFRPAGE, #ADC0_PAGE ;AD控制寄存器页    
    MOV  A,  AD_CHANNEL  ;采样值的累加和是一个字基地址为#XAI,偏移地址为AD_CHANNEL
    RL  A
    MOV  DPTR,  #XAI  ;XAI存放16次采样值的累加和
    ADD  A,   DPL   ;低字节相加
    MOV  DPL,  A
    MOVX A,   @DPTR
    MOV  B,   A
    MOV  A,   ADC0L
    CLR  C
    ADDC A,   B
    MOVX @DPTR,  A
    INC  DPTR     ;高字节相加
    MOVX A,   @DPTR
    MOV  B,   A
    MOV  A,   ADC0H
    ANL  A,   #0FH
    ADDC A,   B
    MOVX @DPTR,  A   ;#XAI中存放格式为低字节、高字节
    MOV  SFRPAGE, #ADC0_PAGE ;AD控制寄存器页
    MOV  ADC0CN, #090H  ;启动下次AD采样
  
    INC  AD_COUNT
    MOV  A,   AD_COUNT
    CLR  C
    SUBB A,   #16 
    JNC  FILL_XAI_XAD   ;当16次采样完成后,把XAI中16个采样和(2字节)存放到XAD RET

    3、驱动程序的嵌入

      在KEIL C51中编译上述程序。使用下载工具软件“DOWNHEX”,把生成的.HEX文件通过串口下载到芯片组的固定地址处,使得内核可以调用它,从而完成二次驱动程序的开发。到此,16路模拟量PLC的开发工作基本完成。

    三、功能介绍

    基于嵌入式PLC开发的多路模拟量网络节点具有以下功能:

    1. 采集工业现场的多路热电偶信号;
    2. 支持三菱、台达等多家人机界面;
    3. 支持梯形图编程(86条指令);
    4. 支持CANbus互连(多机并联运行或扩展单元连接)等。

      这里简要介绍下该网络节点的梯形图功能应用。嵌入式PLC的系统软件中内置了温度转换函数,其功能是把热电偶毫伏信号对应的AD值转化成温度值。适用于任意分度热电偶输入信号,应用于不同的控温场合,配合PID调节,使受控温度精度可达±1℃。

      下面的梯形图程序就是把一路热电偶信号转换成温度值,该信号AD值放在D5000,转换后的温度值存放在D5160中。

基于嵌入式PLC开发的多路模拟量网络节点梯形图
图5 基于嵌入式PLC开发的多路模拟量网络节点梯形图

    四、结束语

      笔者利用嵌入式PLC芯片组开发的的PLC产品的实例证明,本着软硬件可裁剪的原则,开发出的产品可以很好的满足用户的个性化需求,节约了硬件成本、缩短了研发周期,并且得到了许多强大的功能,相信它的出现必将使得PLC生产厂家生产出越来越多的贴近终端市场的PLC。



联系方式

  • 地址:上海松江 上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
  • 邮编:201600
  • 联系电话:未提供
  • 经理:聂航
  • 手机:15221406036
  • 微信:15221406036
  • QQ:3064686604
  • Email:3064686604@qq.com