1、引言
城市生活垃圾、工业垃圾、医院卫生废弃物、淤泥和废橡胶轮胎等垃圾焚烧处理技术,利用垃圾焚烧的余热发电,变废为宝,将是今后环保技术的一个重要发展方向。这种垃圾焚烧日处理废物能力为1~350t,余热锅炉的热容量小,发电机组小,一般为20兆瓦以内。因此,垃圾焚烧发电厂的控制系统比大型电厂简单得多。一般来说,大型电厂的主机控制系统是无法采用PLC来控制的,只有一些辅机系统才能够使用PLC。但是,随着现场总线技术及微处理器性能的突飞猛进,PLC集散控制系统已经成功应用在中型及较复杂的控制领域中,例如,垃圾焚烧发电厂就可以使用PLC控制系统,这样可以大大降低控制系统的成本。
本文将介绍某垃圾焚烧发电厂PLC控制系统.
2、控制系统总体方案介绍
该集散控制系统采用Siemens S7-400系列PLC,Siemens公司的S7-400系列PLC是90年代推出的S7系列中的大型机型,具有完善的功能和强大的通讯能力,特别是总线之一的Profibus,得到很多厂家的支持,非常有利于分布式控制系统的使用,Profibus-DP总线的通讯速率可达12Mbps。S7-417H双机热备系统和ET200M分布式I/O组成的Profibus-DP总线网构成切换结构,实现故障时的无扰动自动切换,可用在安全性能要求极高的控制系统中。但是S7-417H双机热备系统造价相对昂贵,为了减少硬件投资,可以选用软件双冗余(用416CPU进行双机热备),采用分布式I/O的Profibus-DP现场控制总线,上位机与PLC之间采用OSM/ESM环形100兆工业以太网光网进行通讯, 上位机采用Intouch7.1组态软件进行系统组态。
(1) 工作原理
垃圾经自动给料单元送入焚烧炉的干燥床干燥,然后送入炉排,炉排在脉冲空气动力装置的推动下抛动垃圾,垃圾与炉排片上的均匀气孔喷出的助燃空气混合燃烧,燃烧产生的热量由余热锅炉回收。余热锅炉产生的高温高压水蒸汽推动汽机发电,燃尽后进入灰渣坑,由自动除渣装置排出。由主燃烧室挥发和裂解出来的烟气进入第二、三级燃烧室,进行进一步燃烧,使烟气的温度高达1000℃,烟气在此停留时间不少于2s, 使有毒的烟气迅速分解,后经烟气处理设备及除尘设备(电除尘、布袋除尘)处理合格后排入大气。
(2) 环保发电厂主要设备
焚化炉锅炉2台,每台主要的技术参数如下:垃圾处理量: 8.33t/h产生蒸汽量: 22.5t/h过热蒸汽压力: 4.0MPa过热蒸汽温度: 400℃炉膛温度: 980℃给水温度: 145℃ ·汽轮机发电机组一套,主要的技术参数如下:主蒸汽压力: 3.9MPa主蒸汽温度: 390℃·发电机主要的技术参数如下:功率: 12000kW出线电压: 10.5kV频率: 50Hz额定转速: 3000r/min功率因数: 0.8励磁方式: 无刷励磁系统·烟气处理系统两套·配套电气供配电系统该PLC集散控制系统I/O点数有3000余点,其中模拟量300余个。全厂的PLC集散控制系统图如附图所示。
3、上位机监控系统配置
系统共设4台操作员站,1台工程师站。其中2台操作员站用于炉侧设备的监控,包括焚烧炉、锅炉两套系统,烟气脱硫系统,除灰系统;另2台操作员站用于机侧设备的监控,包括汽机系统、制给水系统、废水处理系统、电气及其它部分。炉侧的两台操作员站和机侧的2台操作员站均为双机热备。炉侧和机侧的操作员站之间功能独立,不能互换操作。工程师工作站,进行系统软件开发组态和警报顺序事件记录,工程师站将能够作为任一操作员站完成相关控制监测功能。工程师站、操作员站及PLC之间采用OSM/ESM环形100兆工业以太网光网进行互连通讯。操作系统采用中文bbbbbbs NT 窗口操作系统。
附图 全厂PLC集散控制系统图
上位机采用Intouch7.1组态软件进行系统组态。人机界面主要设计有以下内容:
(1) 系统工艺流程显示
依据设计院提供的系统工艺流程图,按照功能组区域划分;
(2) 顺控系统操作指导显示
有顺控步序显示,即顺控程序步骤的状态显示,以及操作提示等;
(3) 调节系统、调节画面
[NextPage]
回路手操站,调节参数与参数趋势的集中显示;
(4) 重要参数趋势显示
有实时趋势与历史趋势两种显示;
(5) 汽轮机状态等参数的棒图显示;
(6) 全局报警显示
系统按照功能区分为若干个报警组,各个报警组的报警窗口分布于相应功能显示窗口的上方,全局报警显示提供集中查看系统所有报警的能力,或按优先级、报警组过滤查看,并具有全局报警确认;
(7) 报表管理
提供日报、月报打印功能,打印方式有:定时打印、事件驱动打印、运行人员召唤打印,提供历史报表数据查看功能;
(8) PLC系统状态显示
提供系统硬件网络的查错、维护功能;
(9) 多级地图式菜单显示;
(10) 系统安全级别定义
为了保证系统的安全操作,设计有三级权限:工程师级、操作员级、操作员级,操作员级用户可进行系统正常操作,操作员级用户除具有操作员级的功能外,还具有修改调节参数、修改时间、查看历史报表、召唤打印等功能,程师级拥有高权限,具有操作员级所有功能,还可进入开发环境进行组态修改。
4、PLC控制系统配置
整个系统分1#、2#PLC主站。1#PLC主站分别控制1#及2#锅炉焚烧炉;2#PLC主站分别控制汽机系统、制给水系统、废水处理系统、电气及其它部分。每个PLC主站分别由2个CPU416-2DP(订货号:6ES74162XL010AB0)组成双机热备,通过实时冗余软件实现控制系统无扰动换,确保系统安全稳定运行,2个CPU通过MPI接口进行相互监视和数据备份,每个CPU分别通过CP443-1工业以太网通信模块与上位机进行通信。Siemens的416CPU组成双机热备,只能通过软件来实现,因此称之为软冗余,原则上CPU315以上的CPU都可以组成软冗余。用户必需自己编写冗余管理程序,把需要冗余的数据放在特定的DB里,在每个扫描周期里主CPU就把这些特定DB里的数据影像到从CPU中。软冗余与硬冗余具有开发人员可以自定义冗余数据库的优点,这样可以大大缩短在每个扫描周期中冗余数据的影像时间。
[NextPage]
控制信号的输入/输出由相关ET200M 分布式I/O模块完成,采用“就近原则”,以大程度减少现场的硬布线。每个ET200M分别有两块IM153-2通信模块,分别挂在DP总线上,组成冗余的DP总线。ET200M采用是Siemens 300系列分布式I/O模块,价格低廉。每个ET200M可扩展8个I/O模块,容量可高达128字输入/128字输出,大传输速率为12Mbps。本控制系统由西门子400系列的CPU416-2组成双机热备,进行数据冗余,300系列分布式I/O组成双冗余的DP总线,是性价比极高的集散控制系统,在今后的各种环保电厂主机控制及大型发电机组的辅机控制领域中具有极大的推广价值。CPU416具有非凡的性能,它二进制指令的执行时间为0.08μs(CPU417H为0.12μs),大的数字量IO或模拟量IO高达65536或4096点。本集散控制系统有8000余条逻辑控制语句,30个PID控制回路,其中:带微分前馈控制的回路2个,条件切换输出的回路10个,三冲量调节回路2个,单冲量调节回路26个。系统实时性可靠性要求较高。
本集散控制系统中,PLC完成全厂逻辑顺序控制及所有PID回路控制。其中, 逻辑顺序控制分以下几个部分:
(1) 1-2-3级吹扫 其目的是为了确保1-2-3级燃烧室风烟系统相关设备正常且信道畅通,是炉膛保护要求的重要操作之一;
(2) 风机启动;
(3) 焚化炉—锅炉吹扫
其目的是为了确保焚化炉—锅炉整个风烟系统相关设备正常且信道畅通,是炉膛保护要求的重要操作之一;
(4) 第二级预热
其目的是为了提高第二级温度使其达到设定值,是级预热及燃烧室燃烧器投入的前提条件;
(5) 级预热
目的是为了提温度使其达到设定值;
(6) 顺序停运;
(7) 燃烧器顺序点火/停运;
(8) 给料系统自动循环;
(9) 除渣系统自动循环;
(10) 渣坑水位联锁控制;
(11) 吹灰系统顺序控制;
[NextPage]
(12) 锅炉保护;
(13) 主燃料跳闸;
(14) 料油跳闸;
(15) 正常发电模式;
(16) 孤立运行模式;
(17) 汽轮机故障模式;
(18) 化学水处理控制;
(19) 污水处理控制。
5 、主要PID控制回路
(1) 炉膛压力调节系统
此系统为单冲量调节回路。按系统工艺,炉膛应保持一定的负压值(PT101),故需对引风机(PV101)进行PI 调节。为防止引风机变频器运行过大或过小,造成锅炉熄火,调节系统中引入高、低限幅模块。
(2) 干燥炉排温度调节系统
此系统为单冲量调节回路。按系统工艺,进入焚烧炉一燃室1#炉排的垃圾含有一定水分,直接影响炉膛温度,增加1#-2#燃烧器的负担。因此,从三燃室引入混合烟气进行干燥。由于三燃室混合烟气的温度较高,故通过调节干燥风机(TV108)使干燥炉排温度(TE108)维持在设定的工作范围。
(3) 再循环烟气温度调节系统
此系统为单冲量调节回路。通过调节再循环风机(TV109)使四燃室烟气温度(TE109)维持在设定的工作范围。
(4) 一燃区炉膛温度调节系统 此系统为条件切换多输出调节回路。按系统工艺,焚烧炉一燃室分为起炉运行和正常运行两个阶段。在起炉运行阶段,炉膛温度(TE101)主要由1#-6#燃烧器的燃油量来控制,通过调节1#-6#燃烧器回油调节阀(HV107、HV111、HV117、HV121、HV127、HV131)来维持系统对炉膛温度(TE101)的要求。在正常运行阶段,炉膛温度主要靠1#-4#炉排上垃圾的燃烧来维持,通过调节1#-4#炉排的排风调节阀(HV104、HV114、HV124、HV134)(送风机转速一定,排风调节阀可调节送风量)来控制1#-4#炉排上垃圾的燃烧,从而达到系统对炉膛温度(TE101)的要求。此调节过程将直接影响炉膛负压,为防止炉膛负压的减少对系统的影响,当炉膛负压突破一定值时(如小于1kpa),对排风调节阀限幅。
(5) 锅炉汽包水位调节系统
[NextPage]
此系统为三冲量调节回路。通过采用给水流量(FT101)、蒸汽流量(FT103)和汽包水位(LT102)主信号一起对给水调节阀(LV102)进行PI调节,使汽包水位保持在设定范围内,以适应锅炉的蒸发量。
(6) 过热蒸汽温度调节系统
系统将减温器后蒸汽温度(TE116)作为前馈信号引入调节,与过热蒸汽温度(TE119)主信号一起对减温水调节阀(TV119)进行PI调节。
(7) 汽机前压调节系统
此系统为条件切换输出调节回路。正常发电时,利用汽轮机与旁路系统平衡配置,通过汽轮机同步控制器调速汽门来调节主汽门前压力(PT302),使其稳定在工作压力上下。当发电机甩负荷时,控制旁路蒸汽调节阀(PV302),退出自动状态。
(8) 减温减压器温度调节系统
减温减压器共有两项调节任务:调节喷水量维持减压后蒸汽温度在工作范围内;调节减压阀的开度维持减压后蒸汽压力在工作范围内。 本调节系统通过减温水调节阀(TV327)来调节减温减压器后温度(TE327),使其稳定在工作温度上下。
(9) 减温减压器压力调节系统
此系统为条件切换输出调节回路。在低负荷状态时,本调节系统通过调节蒸汽旁路调节阀(HV302)来维持减温减压器后压力(PT325),使其稳定在设定工作范围内。当处于甩负荷状态时,调节系统来调节蒸汽调节阀(PV325)。
(10) 低压分汽缸压力调节系统
此系统为双调节器条件切换单输出回路。低压分汽缸的蒸汽在正常发电模式下来自汽轮机的抽汽;当发电机处于甩负荷状态或汽轮机故障状态时,则来自于主蒸汽经减温减压器后的一部分蒸汽(而另一部分蒸汽则进入高压冷凝器)。本调节系统根据系统要求,通过调节蒸汽调节阀来安全合理的分配这两部分蒸汽。当高压蒸汽冷凝器的压力(PT327)小于0.2Mpa时,调节系统通过调节蒸汽调节阀(PV326)来维持低压分汽缸压力(PT326),使其稳定在设定工作范围内。当高压蒸汽冷凝器的压力(PT327)大于0.2Mpa时,调节系统通过调节蒸汽调节阀(PV326)来维持高压蒸汽冷凝器的压力(PT327),使其稳定在设定工作范围内。
(11) 除氧器液位调节系统
此系统为条件切换输出调节回路。正常发电模式时,大量的凝结水由凝汽器通过低加直接送回到除氧器,不通过疏水箱,除氧器的补给水通过调节进水调节阀(LV304_1),实现除氧器液位(LT404)的恒定。当汽轮机故障状态时,大量的凝结水从高压冷凝器聚到疏水箱,除氧器的补给水则通过疏水箱输送,除氧器液位(LT404)通过调节进水调节阀(LV304_2),实现液位的恒定。
6、结束语
该PLC集散控制系统经两年多的运行证明,各项技术指标均达到国际先进水平,主要表现如下:
(1) 燃烧效率高
垃圾在炉排上与空气混合均匀燃烧充分,垃圾燃尽率高;
(2) 回热效率高
余热锅炉分布在主炉膛和烟道中,可充分吸收垃圾燃烧热量,正常燃烧热效率80%以上,即使水份很大的生活垃圾,燃烧热效率也在70%以上;
(3) 处理垃圾范围广泛
能够处理工业垃圾、生活垃圾、医院垃圾废弃物、废弃橡胶轮胎等;
(4) 运行维护费用低
炉排采用了整块设计维护量小,自动控制水平高,运行人员少;
(5) 可靠性高
经过近半年运行表明,此焚烧炉故障率非常低。
(6) 排放物控制水平高
由于采用二级烟气再燃烧和先进的烟气处理设备,使烟气得到了充分的处理。经长期测试,烟气排放物中CO含量1~10PPM,HC含量2~3PPM,NOx含量35PPM,完全符合欧美排放标准。烟气在二、三级燃烧室燃烧时温度达1000℃,并且停留时间达2s以上, 可使二恶英基本分解,烟气中二恶英的含量为0.04ng/m3, 远低于欧美标准0.5ng/m3.
一、概述
进入21世纪以来,随着连铸机技术的不断进步,使得冶金行业对连铸的高效化有了更高的要求。提高连铸的自动化水平,对保证铸坯质量、提高连铸机的劳动生产率、增加铸机的金属收敛率,以及减少工人劳动强度都起到至关重要的作用。柳钢转炉厂的4#板坯连铸机,属于立弯式直弧形连铸机,弧形半径达9米,可生产宽1400~1800毫米、厚180~250毫米规格的板坯。在该板坯的自动化控制系统中,西门子PLC及其网络以其接口简单、组态方便、编程容易、实时性强而得到广泛应用。
二、生产工艺简介
工艺流程图如:
三、系统介绍
根据板坯连铸机生产工艺的特点,该自动化信息系统分为二级,即1级基础自动化系统和2级过程控制计算机系统,带有部分管理功能。L1是一套完整的电/仪一体化控制系统,其主要作用包括:一、完成各工艺装置的逻辑/顺序控制和操作,工艺参数的设置;二、工艺参数、设备状态的显示和报警及工艺流程画面的监控;三、过程控制及计算机的通信等。L2的功能包括铸机的模型计算、参数设定、质量跟踪等。
在网络配置上,上位机(winccc操作站)与PLC之间通过光纤收发器转换为100Mbps的工业以太网(Industry Ethernet)相连,通过TCP/IP协议实现数据交换。各PLC的CPU之间的数据共享通过MPI接口连接实现。PLC与远程I/O、变频器之间的通讯通过Profibus-DP网实现。Profibus-DP主要用于工业自动化系统的高速数据传送,实现调节和控制功能,是一种高速低成本通讯,用于设备级控制系统与分散式I/O的通讯,是计算机网络通讯向现场级的延伸。该系统网络图如下所示:
[NextPage]
[NextPage]
1、 人机接口HMI
自动化控制系统软件采用SIEMENS 公司的PCS7 V5.2软件包,PLC控制系统软件采用STEP 7 V5.2版本编程,上位机HMI监控系统采用WinCC V5.1版本编程。该系统通过软件组态编程实现过程控制所必要的全部监控功能,包括浇注过程中各种设备状态和相关参数的动态显示、电气设备的CRT操作及显示、操作模式的选择以及故障报警、操作记录、实时趋势和历史趋势曲线等。从而满足工艺模型自动控制、工况监测、安全生产、介质消耗计量等要求,实现自动化系统的人机接口功能。
2、 基础自动化系统
由于西门子PLC具有可靠性高,抗干扰能力强;编程方便,功能完善,易于使用;控制系统设计、安装、调试方便;维修方便,维修工作量小;适应性强,应用灵活等特点,所以该控制系统以 西门子PLC 控制装置为核心。该系统由公用PLC、铸流PLC、仪表PLC、切割PLC和各远程站组成,各PLC采用德国西门子公司新型的PLC S7-400、300系列产品,远程站I/O采用德国图尔克的产品,各部分PLC的主要功能如下:
公用PLC:主要完成对大包回转台及包盖的旋转、升降的控制,中间罐车行走、升降、横移对中控制,液压系统控制,切割前、切割下、切割后和出坯辊道、推钢机的控制,脱引锭装置,引锭杆存放及对中装置以及切头切尾输出装置的控制。
铸流PLC:主要完成扇形段2~13段的驱动辊升降和传动控制,夹紧辊的压力转换控制、引锭杆及铸坯位置的跟踪控制、结晶器调宽和振动控制。
仪表PLC:主要完成结晶器冷却水流量和压力的控制、二次设备冷却水、二次喷淋水的流量调节和压力的控制,以及其他过程参数的设定、采集、监视及回路调节等。
切割PLC:主要完成对火焰切割机大车行走、切割枪的行走、定位控制,切割下辊道的升降,切割后辊道的控制。
[NextPage]
各远程站: 主要是根据控制功能区域的不同,把整个系统划分为分散式的控制单元,利用Profibus总线将PLC所要采集和控制的点分散到现场操作台、箱中。在现场操作台、箱内(如大包操作台、切割操作台、出坯操作台等)设置I/O站,实现分散远程控制,这样由操作台、箱通过端子外引的控制电缆可大大减少,不但系统简单可靠,还节省投资,方便维护。
3、调速传动控制系统
电气传动采用的是西门子公司SIMOVERT MASTERDRIVES 6SE70系列的和MICROMASTER 440系列的全数字矢量控制变频调速装置。440系列的变频器主要用在火焰切割机上,其余的都用6SE70系列变频器控制。MICROMASTER 440通用型变频器由微处理器控制,并采用具有现代先进技术水平的绝缘栅双极晶体管(IGBT)作为功率输出器件。因此,具有很高的运行可靠性和功能的多样性,全面完善的保护功能为变频器和电动机提供了良好的保护。
四、主要控制功能说明
1、大包回转台及中间罐车控制
装有合格钢水的钢水包,由行车吊至大包回转台钢包臂上,包臂旋转至浇注位,等待浇铸。预热好的中间罐由中间罐车运送至结晶器上方,中间罐下降,对中就位。钢水罐下降后手工开启滑动水口,钢水经长水口进入中间罐。待中间罐内钢水达到一定重量后人工打开中间罐塞棒,钢水通过浸入式水口流入结晶器内。
2、送引锭、脱引锭控制
送引锭:发出自动送引锭指令后,引锭杆存放小车向下反转运行,将引锭杆送入到切割后辊道上。到位后小车停止,4个对中缸推出进行对中,然后切割后、切割下、切割前辊道启动,以30米/分的速度将引锭杆送入到水平扇形段内。当引锭杆尾部离开2#光电管时,切割后辊道停止。当引锭杆头部到达1#光电管时,切割前和切割下辊道停止运转。待操作台发出确认指令后,辊道以5米/分的速度向扇形段内运行,同时安装在2、7、13段的编码器开始跟踪,扇形段传动辊逐段压下,将引锭杆夹住送入结晶器下口。
脱引锭:当引锭杆从扇形段出来到达1#光电管时,脱引锭装置将引锭头与铸坯分离,引锭杆被快速送到切割后辊道上,当引锭杆到达2#光电管时切割后辊道停止,然后引锭杆存放小车向上运行将引锭杆侧移存放,等待下一浇次使用
3、火焰切割机自动切割控制
自动状态下,红外定尺系统给火焰切割机的PLC发出信号,火焰切割机开始预压紧,并且切割枪运动至铸坯边缘进行定位,预热氧阀和煤气阀打开。到达定尺距离后火焰切割机的压头压下,粒化水和切割氧打开,开始切割铸坯。当切割枪到达切割下辊道边缘时,切下辊往下摆,待切割枪离开切下辊后又向上摆回到原位。1#、2#切割枪相遇后,2#枪返回,1#枪继续向前切割,切割完毕1#枪返回原位,接着切后辊开始运转,把铸坯送到下线辊道。
4、输送辊道及推钢机控制
输送辊道系统有切割前辊道、切割下辊道、切割后辊道和移载下线辊道。当火焰切割机发出切割完毕信号,切割后辊道开始正转。当2#光电管检测到铸坯时,下线辊道启动。而当铸坯尾部离开2#光电管时,切割后辊道停止。当3#光电管检测到铸坯时,下线辊道停止。接着,推钢机把铸坯推到冷床上冷却,然后快速反回,等待下一块铸坯。
五、关键技术的实现:
1、 变频调速控制技术:
大包回转台、中间罐车、结晶器振动、扇形段辊道、输送辊道、火焰切割机、推钢机等设备均采用了变频调速控制技术。PLC通过Remote I/O Scanner通讯方式将控制命令传达给变频器,同时接收变频器的状态实时反馈信息;控制程序则通过采用MOV指令将启/停、正/反转、速度给定值等命令信息以输出字的数据格式传送给变频器,从而实现变频调速的自动控制。
结晶器振动采用同调方式(振动频率随拉速的变化而变化),即根据下面的公式来控制结晶器振动的频率:F(频率)=AV(拉速)+B,其中A=20,B=80。
2、 铸流自动跟踪技术:
增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。扇行段驱动辊的电机上都安装了A-B增量型编码器(1024脉冲/圈),铸流PLC根据编码器发送至高速计数模板的脉冲数,自动计算并完成送引锭模式、浇注模式下的二冷区配水、电机测速以及铸坯测长等全自动控制。
跟踪长度=脉冲当量X脉冲数
=传动比X编码器分辨率X脉冲数÷辊子周长
3、 红外定尺技术
红外摄像自动定尺控制系统是通过红外摄像器对红热钢坯远距离实时成像,然后将实时图像数字化处理后再传输给CPU,由CPU经系列运算和模糊识别后分辨出钢坯头,并按设定的定尺长度发出切割信号,通知PLC控制火焰切割机进行切割。该系统具备检测可靠、控制精度高、操作维护简单等显著特点
4、液面自动控制技术
涡流传感器可连续测量结晶器的钢水液面,输出随液面高度线性变化的电压或电流模拟量,送给液位调节系统,从而实现自动控制拉坯或浇钢速度,并且使钢水液面稳定地保持在预定的高度上。因此,不但可预测并减少漏钢、溢钢等事故的发生,提高连铸机作业率,还能减少钢坯表面裂纹,保证钢坯质量。
5、大包下渣检测技术
大包下渣检测系统是利用高度智能化、自动化的平衡补偿技术,根据钢渣与钢水导电率的差异,利用电磁感应的原理检测出钢水中含渣量的百分数,并以声光报警的形式提醒浇注操作工及时关闭大包滑动水口,或直接发出大包水口关闭信号,来控制渣随钢水流入中包的含量,从而提高钢水的洁净度,减少除渣操作,避免水口堵塞,同时提高钢坯质量。
六、结束语
柳钢转炉分厂板坯4#机计算机自动控制系统采用西门子PLC控制系统,在实现“三电(既电气、仪表和计算机)一体化”的基础上,充分运用工业网络、现场总线技术和多媒体技术,将PLC与操作站、PLC与PLC、PLC与分布式I/O站有机地连接起来,实现快速、准确的控制,实现了设备的连锁启停、回路调节、报警、趋势记录等一系列功能,不但提高了钢水利用率、提高了铸坯质量、产量和连铸自动化水平,还降低了能耗,减少了故障停机率,提高了铸机作业率,同时也改善了工人工作环境,减轻了工人劳动强度,提高了工作效率