浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
广州西门子PLC总代理商

广州西门子PLC总代理商

OPC: 用于过程控制的对象链接和嵌入。
  本文论述的这条纺织生产线是青岛宏大纺织机械有限责任公司新近研制开发的产品。该公司是中国纺机行业的企业,梳棉机,落筒机,清梳联等是其主要产品。近年来,随着纺织行业的发展,该公司不断开发具备高新技术,能与国外产品相媲美的新产品。

  而该生产线正是青岛宏大纺织机械有限责任公司这一、二年来的重点项目,目前正处于优化调试阶段,将于今年底面市,因此本文在论及该生产线时,略去了各设备的名称及其主要工艺,主要描述西门子产品在该项目上所体现的特点,以及作者使用中的体会。

该生产线由五种不同类型的设备组成,分别称之为A、B、C、D、E。工艺流程如图一:

  其中A 为主要设备,该设备停止运行则整个生产线停止生产。而B、C、D、E 等设备则可以根据纺织厂不同的产品工艺要求独立地运行或停止,而且B、C、D 设备可以一台运行,也可以两台相同设备同时运行。E 设备则可以有更多数量同时运行。在电气控制上要求将生产线的生产状况实时反映到车间级及厂级管理层,并将生产数据存档。同时要求整个生产线上所有设备的运行状态必须传送到一个操作员站及一个工程师站上实时显示,所有设备的工艺参数设置由操作员站完成。另外,由于生产线上各设备分散距离较远,考虑到设备手动调试时的可操作性,要求设备的手动调试必须就近连接操作面板,一旦手动调试停止,即拆除连接的操作面板。
在选择控制系统时,初有两种设计方案:
种设计方案如图二:

  A 设备选用S7-400 系列PLC,CPU 为CPU412-2DP;C 设备,D 设备选用S7-300系列PLC,CPU 分别为CPU314,CPU315-2DP;B 设备和E 设备选用S7-200 系列PLC,CPU 为CPU224 并带EM277 PROFIBUS 扩展板,将B 设备和E 设备分别作为D 设备的智能PROFIBUS
从站。A 设备上的S7-400 系统中配置一块CP443-1 工业以太网通讯卡,与工程师站联接,并与车间级及厂级管理层联网。A、C、D 设备及操作员站TP37 用MPI联网,各设备互相之间的逻辑互锁及数据交换通过MPI 网络实现。C 设备,D 设备将生产状况及运行状态传送给A 设备,由A 设备通过以太网传送给工程师站及管理层网络。

  同时,B 设备,E 设备通过PROFIBUS 网络将信息传送给D 设备,通过D 设备传送给A 设备,并向上一级传送。系统中配置的TP37 触摸屏作为操作员站,为各设备设置参数,并显示部分运行数据。对于A、C、D 设备的手动调试利用一个TP170B 通过MPI 网络就近联接各PLC 来完成。
第二种设计方案如图三:

  整个控制系统由PROFIBUS 网络组成。A 设备选用S7-400 系列PLC,CPU 为CPU412-2DP,作PROFIBUS 主站,其自身的I/0 由ET200M 组成;C 设备,D 设备,选用ET200M 远程I/0 方式作A 设备的PROFIBUS 从站;B 设备和E 设备选用S7-200系列PLC,并配EM277,直接作为A 设备的智能从站。A 设备与工程师站的联接及与管理层联网方式同方案一,操作员站同样选用TP37。A、C、D 设备的手动调试利用一个TP170B 就近联接完成。

  对于种设计方案,各设备的控制系统独立性较强,可单独运行或停止,调试方便,但问题也是显而易见的:
  1. 数据传送问题
  因为B、C、D、E 各设备的信息都必须通过A 设备传送到工程师站及管理层网络,因此B、C、D、E 设备的数据传送到工程师站的实时性较差。TP37 作为操作员站,同时要与A、C、D 三种设备通讯,同样需要较长的数据更新周期。
  2. 通讯能力问题
  因为C,D 设备选用的是S7-300 系列PLC 中的CPU314,CPU315-2DP,它们的S7 固定连接数量受到限制,如C 设备,它必须同时与一个A 设备,两个D 设备,一个TP37 及一个TP170B 连接,这个连接数超过了它的S7 固定连接数量。虽然可以通过A设备再与D 设备连接,或建立动态连接等方法来解决问题,但显然不方便。而且A、C、D 设备之间的逻辑连锁控制,如通过上述两种方法解决,实时性很差,在工艺上也是不允许的。
  3. 互换性较差
  用这种方案时,A 设备,两台C 设备,两台D 设备,都有不同的MPI 地址。生产厂在提供设备给纺织厂时,必须对相同设备的CPU 下载不同的配置,相同设备之间无法互换,给设备安装及销售管理增加麻烦。
  第二种方案则解决了种方案所遇到的技术问题。因为C、D 设备是A 设备的分布式I/0 站,所有生产信息及运行状态都在CPU412-2DP 中,这些设备的信息同时传送到工程师站及管理层网络上。TP37 也只和一个CPU 通讯,数据更新快,也不存在各设备之间通讯能力的问题。同时,C、D 设备在PROFIBUS 网上的从站地址可以直接在接口模板IM153 上设置,因此,C 设备之间或D 设备之间可以完全互换,设备安装维修更方便。虽然在这种方案中,C、D 设备必须依赖A 设备的运行才能运行,但因为本来生产工艺上,当A 设备停止时,C、D 设备就不能运行,因此,C、D 设备的独立运行没有必要,如果仅为设备调试方便,相对而言意义不大。
  但是,第二种设计方案也有不是之处。A、B、C、D、E 各设备的信息都必须通过一块CP443-1 以太网卡传送到工程师站及管理层网络,存在一个数据通讯的瓶颈问题,数据交换的实时性及速度都受到限制。另外,鉴于TP37 的能力,操作员站只能用于参数设置及少量数据显示用,而无法完成数据统计、存档、报表生成等进一步的数据处理功能,并且图形的动态显示效果也不理想。而西门子WinAC 产品的特点正好解决了这些问题。
  WinAC 不仅仅是一个可编程序控制器,它将自动化控制和人机界面集成在一个PC 平台上,在进行自动化控制的同时,完成大量的数据通讯,数据处理及可视化处理。基于上述原因,对第二种设计方案进行了改进。首先,考虑到生产线运行的安全性及稳定性,用WinAC 产品中的插槽型PLC Slot 412 代替原来的S7-400PLC 的CPU412-2DP,配合使用电源扩展板,并外接24 伏直流电源,使控制系统可独立于PC 机的操作系统,保证系统运行的高可靠性。其次选用西门子嵌入式触摸面板工业PC 机IL70 作为PC 平台,其集成的TCP/IP 以太网口直接与工程师站及管理层联网,另外在IL70 上运行WinCC 人机界面软件,使操作员站能完成更强大的功能。
  终的设计方案如图四:

  WinAC Slot 412 作为系统的中央控制器是整个控制系统的PROFIBUS-DP 主站,完成设备A、C、D 的控制任务。C、D 设备使用ET200M 作为远程分布式I/0 站,直接连接到Slot 412 集成的DP 口上。B,E 设备使用CPU224,并配置EM277 PROFIBUS 扩展板作为Slot 412 的智能从站,将数据信息传送给Slot 412。电源扩展板上的外接24 伏直流电源及后备电池保证在PC 机断电情况下,Slot 412 仍能正常工作。
  IL70 作为WinAC Slot 412 的运行平台,同时也作为操作员站,并通过集成的TCP/IP、网口与工程师站及管理层联网。IL70 上运行的WinCC 人机界面软件通过OPC 客户机方式从WinAC 的OPC 服务器端存取控制引擎中的数据。由于WinAC、WinCC 在一个PC
平台上,因此这种数据交换方式速度快,数据量大,实时性好。
  WinCC 作为人机操作接口,完成整个控制系统的参数设置及实时数据显示,实现用户提出的复杂的动画显示功能,并对生产数据及各设备运行状态进行存档,生成报表,提供报警信息以及设备的维护信息。
  工程师站是一台普通的PC 机,通过以太网与操作员站联接。工程师站上也运行一套WinCC 软件,通过DCOM 配置,同样以OPC 方式从WinAC 存取数据,并且某些权限比操作员站上的高。由于在操作员站上使用了WinCC 工业组态软件,使管理层从该生产线获取生产信息非常方便。WinCC 具备多种方式进行网上数据交换,如可以运用WinCC 的客户机/服务器方式,或WinCC 的Web 浏览器功能等等,为将来用户厂的联网生产管理提供多种选择。
  一台移动式的TP170B 操作面板,通过C 或D 设备上的ET200M 接口模板IM153 上的PROFIBUS 三通接头直接联接到系统的PROFIBUS 网上,对网上的任何一台C 设备或D 设备进行手动操作,使调试人员能在设备边上直接进行手动调试。TP170B 上集成了生产线上所有A、C、D 各设备的手动调试画面,因此一台TP170B 可完成所有设备的手动调试工作。
  对于系统控制软件,B、E 设备的控制程序由自身的CPU224 完成。A、C、D 设备控制程序由WinAC Slot 412 完成。其中A 设备中有两路高速计数要求,由两块FM350-1
高速计数模板完成。每个D 设备中有两路压力PID 调节,系统中一共有4 路PID 调节,鉴于Slot 412 的高速指令执行速度,用S7 软件PID 功能块就可以完全满足要求。
  系统控制软件中的一个重要部分是完成用户的多种工艺选择要求。如图一所示,纺织厂根据自己产品的工艺要求可以随意组建生产线。如可以只购买A、B、C、D 各1 套设备及若干E 设备组成一条生产线;或购买A、B 及C 设备各1 套,D 设备2 套及若干E 设备组成一条生产线;或购买1 套A 设备,B、C、D 设备各2 套,在运行时可自由选择是否开1 套C 设备,或同时开2 套C 设备等等。而生产线的生产厂家为保证产品管理的统一性,要求只用一套控制软件来完成生产线各种可能的配置的控制任务。也就是对他们的所有纺织厂用户只提供一套控制软件,由用户自己在操作员站上设置生产线的实际配备。
  这就出现了一个问题,即控制软件必须包括生产线大可能配置所有设备的控制任务以及组态配置,但当某个设备在生产线上实际不存在时,又必须保证整个PROFIBUS网络运行不出现故障。
  西门子STEP7 软件提供了一种方法可以通过用户程序,使PROFIBUS 从站自由地从网上断开而不影响主站的运行。首先,在控制程序中,必须编制组织块OB84、OB86、OB87、OB122,这些组织块在系统出现网络故障,或I/0
寻址故障时,由CPU 直接调用。如果控制程序没有包括这些组织块,当系统网络中有从站断开,CPU 会直接进入停止运行状态。因此,在Slot 412的控制程序中装入了OB84、OB86、OB87、OB122。
  其次,STEP7 提供了一个系统标准块SFC12,利用SFC12,控制程序可以读取DP从站的状态,禁止DP 从站或激活DP 从站。当CPU 启动时,如果是冷启动或暖启动,系统配置中的所有DP 从站被自动激活。热启动时,DP 从站保持原有状态,即如果原来是激活状态则保持激活,原来是禁止状态则保持禁止。如前所述,生产线的控制程序及配置是唯一的,也就是配置是按照生产线可能的大配置做的,如果实际的设备配置与控制软件中不同,下载后CPU 会出现故障。因此,在生产线按装完成次正常通电时,初始化程序将所有Slot 412 的PROFIBUS 从站通过调用SFC 12 禁止掉,等Slot 412 正常运行后,由操作员在操作员站上通过WinCC 人机界面软件做出实际需要的配置。控制程序确认这些配置后,再将存在的或选用的设备一一激活,以后当CPU 重新启动时就会保持这种配置状态,而无需再做激活或禁止工作。通过以上两个处理,控制系统能在任何不同的配置下正常工作。
  目前,该项目调试正接近尾声,所有控制软件已基本调试完成,并达到了预期的目标。
  通过这个项目可以发现,随着PC 机及网络技术在工业现场的快速发展,基于PC 的自动化产品解决了传统PLC 不足之处,它的大容量实时数据处理,大容量的系统资源,方便的网络联接,强大的可视化功能,快速的指令处理等能力,会使该类产品在工业自动化领域中得到越来越多的应用。


业务挑战

激烈的市场竞争使青烟认识到采用标准生产流程和降低生产成本的重要性。MES系统可以灵活的实现工厂各个层次的信息流,这正是他们想要的。青烟要实现的是一个由CIMS系统支持的数字化工厂。在这个CIMS环境中共有11个子系统,包括ERP系统、MES系统、生产自动化系统、CAD系统、立库管理系统等,在这样一个复杂的IT环境中,信息的流的冲突是很容易发生的。MES系统作为IT系统的中间层,与其他系统紧密结合,真正的实现了多系统无缝集成。

青烟的面临的挑战是在烟草行业建立一个符合的、先进的IT系统。这需要克服离散IT构架的束缚,建立一个适合烟草工业的,可以协同工作的IT系统。这就需要MES在工厂实现S-95的标准功能。规模如此之大,结构如此复杂的系统对于系统供应商和青烟人来讲无疑是一个巨大的挑战。

基于SIMATIC ITMES解决方案

青烟终委托西门子采用SIMATIC IT来应对所面临的挑战。SIMATIC IT解决了ERP系统、自动化系统的信息孤岛问题,并实现了ISA-S95所涵盖的功能。

基于SIMATIC IT,生产管理人员可以及时了解生产中的每一个细节,监控每一个关键点、每个时段的生产活动,信息的准确性和实时性大大提高。MES系统为生产调度人员的工作提供了参考依据和辅助手段,能够在时间处理生产中发生的问题,实现生产过程质量控制,还实现了全程的产品跟踪,这大大提高了生产管理的效率。例如:生产计划的编制及下达时间由原来的4小时减少到10分钟,生产过程节省了1小时,质量信息得到了实时反馈,工艺标准下达由4小时缩短到1分钟。

西门子提供了SIMATIC IT的功能库,它可以得到实时的生产信息,并且可以把这些生产数据通过浏览界面和报表系统展示给相关部门;通过使用这些生产信息,工厂就可以实现优的生产流程和持续的生产质量改进。

投资回报

改进生产管理,提高产品质量,加快新产品研发,是青岛卷烟厂实施MES系统的主要目标。西门子SIMATIC IT给用户提供了合适的工具,通过这些工具,用户可以更有效的管理生产数据和生产流程;工人可以得到系统的决策支持信息;动化程度的提高减少了手工操作,这不仅节约了时间还大大降低了人工产生的错误;所有这些都能够加快投资回报;基于SIMATIC IT的MES系统是一个完美的解决方案。

5.3.1 运行:当超滤水箱水位高于低液位,阻垢剂计量泵自动位,还原剂计量泵自动位,超滤/反渗透冲洗泵选择开关自动位,反渗透水箱的水位低于70%时,反渗透装置自动投用。

  5.3.2备用:当反渗透水箱的水位达到高液位,或者超滤水箱的水位低于低液位时,反渗透装置自动退出到备用状态,同时停高压泵

  5.3.3反洗:当系统停运后,并且超滤不在反冲时,超滤/反渗透反洗泵自动开启,开启浓水阀,开始反洗。


  5.4电动阀的控制:

  生水箱进水阀、蒸汽切断阀是电动开关阀,控制方式分为机旁和远程控制两种方式:机旁控制是利用选择机旁的启动或停止按钮,通过PLC发出启动或停止信号;远程控制是操作人员在监控室根据画面上的启动或停止按钮进行点击操作。


  6 .关键控制技术方案的实现

  6.1变频调速控制:

  变频调速控制技术(variable velocity variable frequency control technology)基本原理是根据电机转速与变频器输入频率成正比的关系:n=60f(1-S)/p (式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。

  在对生水泵、反渗透水泵和除盐水泵的变频控制中,实现了对出口压力的过程单回路控制,能及时控制参数偏差,确保生产工艺设备稳定运行。


PID逻辑控制示意图如下:




  采用变频调速技术后,变频器具有手动/自动转换功能,可根据实际生产进行转速的变化。同时,电机水泵的转速普遍下降,减少了轴承的磨损和发热,延长水泵的使用寿命,降低了设备维修费用。


  6.2 雷达式液位检测控制:

  现场水箱采用VEGAPULS雷达式液位计,主要对生水箱、超滤水箱、反渗透水箱和除盐水箱进行液位测量。液位计采用脉冲微波技术,可以在极短时间内对水箱内的液位进行jingque测量和控制。控制流程图为:




  雷达液位计采用一体化设计,在测量时发出的电磁波能够穿过真空,不需要传输媒介,具有不受大气、蒸气、槽内挥发雾影响的特点。采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。测量范围大,大的测量范围可达0~35m,可用于高温、高压的液位测量。参数设定方便,可用液位计上的简易操作键进行设定,也可用HART协议的手操器或装有VEGA Visual Operating软件的 PC机在远程或直接接在液位计的通信端进行设定,十分方便。


  6.3 反渗透水处理自动控制:

  反渗透水处理自动控制技术是一种高科技的水处理技术,在运行过程中实现自动运行和手动操作无扰动切换。系统引入控制脉冲数偏移量函数的多级模糊控制算法克服了普通模糊控制器连续变量模糊化为有限的离散值所造成的精度低的问题。加入后对清除稳态误差与稳态震颤现象的效果明显;加上多级自修正量化因子和比例因子,可明显提高系统快速性,且系数修改无复杂运算,便于在PLC上实现。


   控制原理图见图11:

图11
图11 反渗透子程序流程图





  6.4 水质在线检测技术

  水的污泥指数测定是一个非常有效的水质在线检测技术,通过测定原水,多介质过滤、活性碳过滤前后,离子交换前后等取样点的SDI及FI值,可以有效的监控水处理系统运行,可以判断各个工艺步骤是否正常。SDI值越低,水质越干净.进水水质、水量时刻在变化,是一个复杂的、大滞后多变量参数的动态非线性系统。机理复杂,难于建模。采用RBF人工神经网络技术可以较好的实现在线实时地监测进水水质参数,RBF是三层结构:输入层、隐含层和单数输出层。控制原理图见图12。在除盐水处理过程中,测量进水淤积指数SDI是重要的水质处理参数,输出层选SDI参数,输入量个数要与SDI输出有密切相关的参数变量,如PH值、电导率、碱度、反应时间,进水流量等,采用RBF神经网络的软测量技术,在实际应用中计算速度快,能够在线查看,更好的达到实时检测的目的。





  7结论

  除盐水项目于2006年底改造,通过过滤器、反渗透装置及阴阳离子器等阶段的调试,于2007年3月正式投入运行。运行后效果良好,目前生产稳定,日产合格水多可达2000吨,完全达到了预期的设计要求和生产目标。实践表明,该监控系统的投运,有效地提高了除盐水站的生产水平及供水机组的自保护功能,自动化控制程度的大大提高,也使得生产操作更加简便,工人劳动强度小,基本无环境污染和出水水质稳定,在降低能耗、高产稳产、安全生产、保护环境等方面发挥了重要作用。

  西门子S7-400自控系统的使用,极大地提高了全站的自动化水平,为该站的控制设备并入区域网络控制系统,实现生产管理的远程监控做好了有利准备。



展开全文
优质商家推荐 拨打电话