西门子模块6ES7253-1AA22-0XA0一级代理
引言
隧道是公路中的一个特殊路段,其管状的构造和封闭的环境容易诱发诸如追尾、拥堵、火灾等事故的发生,为保证车辆在隧道中能够安全行驶,营造舒适的行车环境,在隧道中安装了通风、照明、监控、消防等交通工程设施,这些设施相对均匀的分布在隧道当中,为实施对这些设施的控制,并将布设在隧道内的各种检测装置所采集的交通流参数值、车辆运行的环境指标和现场设备的运行状况等信息能够准确、及时的传输到监控中心,则需要建立一套快速、安全、可靠的隧道测控系统。随着计算机技术的发展,PLC的性能和功能得到了很大的改善和提高,特别是PLC的高可靠性、高抗干扰能力及高机电一体化的特点,使得PLC更适应在公路隧道这样的特殊环境中应用,加上其通信和网络功能大大增强,可以方便的实现PLC与计算机、PLC与PLC、PLC与其它现场设备的链接。此外,PLC系统可极大的节省配线,方便安装,简化系统维护。因此基于PLC网络的隧道测控系统正在得到广泛的推崇和应用。
1、网络结构
1.1 系统方案
隧道测控系统上位管理计算机较多,整个网络采用二层网络结构,层为管理层(即信息层),采用Ethernet局域网,承担管理、决策和控制任务;第二层为控制层,采用PLC的光纤环型网络(Controller bbbb),实施现场数据采集、数据传输和设备的控制。现场PLC网络由主PLC通过以太网模块与局域网连接,实现以太网通信。这种控制系统实现了区域控制器的现场控制,并且信号传输实现了全数字化,从底层到顶层均采用通信网络连接;系统结构采用全分散化,由现场的控制器直接控制设备;上层通信网络采用以太网通信,可方便地实现数据共享。此网络结构体现了FCS控制控制系统的优势,当环型网络上的仅有一点发生故障时,数据可正常传输,系统可正常工作,当有多点故障时,现场PLC可独立工作,等待系统恢复正常后再接受指令,交换数据,大大增强了控制系统运行的可靠性。系统构成如图1所示。
1.2 Controller bbbb网络特点
Controller bbbb网络即控制器网络,是FA领域用于在PLC之间、计算机和PLC之间进行大容量数据交换的网络。计算机可通过Controller bbbb支持软件对网络上的PLC进行监控,用于个人计算机的CLK支持卡有两种:一种是线缆型的3G8F5-CLK21-E,另一种是光缆型的3G8F5-CLK11-E。Controller bbbb网络支持数据链接、数据共享和信息通信,数据链接区域可自由设定构成一个数据链接系统。
(1)通信介质可采用双绞线或光缆
线缆型的Controller bbbb网采用双绞线连接,双绞线比同轴电缆或光缆容易处理和维护,减少连网费用。通信距离可达1km。
光缆型的Controller bbbb网采用光纤连接,能够获得更多大容量的数据链接和更长距离的通信,它的通信距离可达20km。
(2)高速度的数据通信
控制器网络的通信波特率可达2Mbps,远远高于PC bbbb网的128Kbps。
(3)大容量的数据链接
每台PLC发送字数可达1K,发送和接收总字节数可达8K。数据链接可以自动设置,也可以根据实际需要人工设置,非常灵活。
(4)信息通信
信息通信是在用户程序中执行通信指令SEND、RECV、CMND来实现的。通过执行通信指令可很方便的实现网络通信。
(5)灵活的网络互联
Controller bbbb网络可以配置成单级,即所有的PLC仅安装一个CLK单元,并由线缆连接起来,单级的大节点数为32。若有一台PLC安装2个或2个以上的CLK单元,分别与其它PLC的CLK单元连接成各自的子网,则形成多级系统。一台PLC可同时安装Controller bbbb单元和Ethernet单元,使用通信命令可实现三级网络内的无缝通信。
(6)改进的错误处理
由于出错记录中有错误发生的时间和细节,使得快速处理错误成为可能。当令牌节点发生错误时,另一个节点会自动变成令牌节点,防止了网络中一个节点出错影响其它节点,保证了系统的可靠性。
1.3硬件配置
正确选择PLC对于保证整个控制系统的技术与经济性能指标起着重要作用。选择PLC,包括机型的选择、容量的选择、I/O模块的选择、电源的选择等。
为保证PLC与上位监控计算机通信的稳定性,中央控制室设置一台CS1D系列PLC控制器用于与以上所述的区域控制器相连,用来接收信息和发布中央控制室命令。CS1D系列PLC采用更快速度的CPU并可通过两个以太网模块CS1W-ETN21D与上位机(带双以太网卡)相连,大大增强系统通信的实时性和稳定性。
由于隧道测控系统选用的区域控制器需支持以太网功能、远程通信功能,而且控制系统稳定可靠,区域控制器要有一定的存储能力,对于现场PLC的选择应根据被控对象对控制性能的要求,及PLC的输入量、输出量的类型和特点,确定出PLC的型号和硬件配置。对于整体式PLC,应确定基本单元和扩展单元的型号;对模块式PLC应确定框架(或底板)的型号,及所需模块的型号和数量。CS1系列PLC能完成对隧道现场设备的控制,节省区域控制箱的空间,减少控制设备的投资,因此选用CS1系列PLC。
2、通信设置及实现
2.1 通信设置
以薛公岭隧道为例,系统中设主控PLC1台,现场PLC(区域控制器)8台,2#、3#、4#、6#、7#、8#主要用于隧道交通控制与环境检测,1#、5#站主要用于隧道通风、照明控制。Controller bbbb网络通信设置三步完成:
(1) 用GI型光缆将由Controller bbbb模块CS1-CLK52-V1组成的网络连接起来。
(2) 通过拨动CS1-CLK52-V1面板UNIT No和NODE No旋钮并按照站的编号设置相应数值的节点号,单元号。通过C-NET软件给每个站以以太网为2号网络、Controller bbbb 网络为1号网络创建路由表并将路由表内容下传给对应的控制站。
(3) 数据链接表设置。数据链接表的设定有两种方式:自动方式和手动方式。设置方式选择可使用手握编程器或CX-P软件在启动节点PLC的CPU单元DM区设置。
①自动方式设定时可以用来建立简单的数据链接,所有的接收节点共享发送节点相同的数据。第1区从区位IR、CIO和LR中选择,第2区从数据存储区DM和EM中选择。每个节点不允许只接收或只发送数据的一部分,所有节点都可以被指定为加入或不加入数据链接。
②手动设置数据链接区分几种情况,其中:(a)发送和接收节点的次序是自由的;(b)一些节点可以只发送而不接收数据;(c)一些节点可以只接收而不发送数据;(d)一个节点可以只接收从区域起点开始指定数量的字;(e)一个节点可以只接收从指定字位置开始的指定字数的数据,开始字被设置成一个从发送数据起始处开始的偏移量。由于高速公路隧道监控系统中区域控制器之间全部需要通信,因此本文在设置数据链接表时接收节点共享发送节点的所有数据,发送节点和接收节点次序采用自由格式,每台区域控制器设置链接区域大小为800字,发送均从D1000开始。
2.2 通信实现
(1)启动数据链接表实现PLC之间通信
通过启动数据链接表可实现上述设定数据链接表链接区的数据共享,达到通信的目的。这种方式实现起来简单、方便,但不灵活,PLC不能实现其它内存区的数据共享。起、停数据链接表有三种方式:
①使用编程设备或用户程序
CS1系列PLC的启动位是启动节点字DM30000×CLK单元号中的第0位。设置启动位从OFF变为ON或当接通电源时已为ON时,启动数据链接,启动位从ON变为OFF时停止数据链接。
②使用Controller bbbb支持软件
在上位机或上位机节点上,使用Controller bbbb支持软件向数据链接中的节点发出启动/停止数据链接命令。
③使用FINS命令
使用网络通信指令CMND从一个Controller bbbb节点(PLC或计算机)向一个数据链接中的节点发送RUN(“0401”)/STOP(“0402”)指令来启动/停止数据链接。
(2)网络指令通信
在网络内通过发送网络指令SEND、RECV和CMND可实现FINS通信。这种通信方式灵活,可对目标节点PLC进行任何操作。发送网络指令是先将需发送的命令数据存储到给定的内存区,确定连接的本地内存地址和目标站内存地址,通过网络指令就可实现对远程站通信。
(3)操作过程
基于PLC网络的隧道测控系统的操作步骤是区域控制器首先根据控制器状态、内存区状态、端口状态诊断控制器是否在正常状态下工作。其次,区域控制器采集本地控制的输入设备的输入数据,进行处理后并将结果数据发送到数据链接共享区,同时读取其它控制器共享到数据链接区的数据,通过对所有的采集数据来判断整个隧道的状态,并按照判断结果质询上位机是否执行相应程序,得到确认后,现场区域控制器立即执行相应的程序。若区域控制器长时间没有得到上位机命令,根据具体情况按照规定的预案进行控制。根据预案程序的运行改变现场设备的控制状态,并按照控制状态对应逻辑真值表输出到显示设备中,PLC执行完外部响应和控制程序,I/O刷新则将结果输出到现场设备中。
3、结语
以PLC作为本地控制器,用PLC网络实现隧道测控,集数据采集控制于一体,避免了错综复杂的布线,减少了出错的概率。从而提高了整个系统的可靠性和安全性。
本文的创新点在于,将PLC及其网络应用于公路隧道测控系统,一方面使PLC抗干扰性好,机电一体化程度高,通信和网络功能强大等特点得到了充分的利用,拓宽了PLC的应用领域;另一方满足了隧道内温度、湿度、噪音、灰尘、振动、汽车点火高频干扰等恶劣环境的要求,确保了测控系统的稳定性和可靠性。
汽轮机热工监视和保护装置以及由其所组成的信号报警系统和保护控制系统,是保护汽轮机安全运行的重要设备。随着机组容量的增大,汽轮机安全监视和保护就显得更加重要,同时对汽轮机安全监视和保护装置的准确性和可靠性也提出了更高的要求。原有及早期设计的保护系统大多为继电器及硬件逻辑搭接的,它的系统可靠性较差,维护量较大。因此,采用可编程控制器(PLC)对汽轮机热工监视和保护装置进行控制显得十分重要和必要。以下所介绍的为应用PLC控制的汽轮机保护系统。
1 汽轮机保护系统概述
汽轮机在正常运行过程中,需要根据用户用电量来调节负荷,为了防止调节系统因故障失灵,和汽轮机突然甩负荷时引起超速危险,以备在机组出现某些异常时迅速动作停机,防止发生事故。汽轮机必须设置转速、转子的轴向位移、轴瓦振动、机缸相对膨胀、汽轮机各轴承的油压和油温、凝汽器的真空度、发电机的主保护动作等参数的保护,在这些参数中的任何一个超过所规定的允许值时,要求自动发出信号使磁力断路油门动作,泄掉安全油,切断进汽,进行强制停机,并且同时声光报警,记录停机原因,向DCS控制系统和调节系统发送联锁信号,联锁调节门、发电机和油泵,使整个系统迅速回到安全状态,达到保护汽轮机的目的。
2 系统组成
汽轮机保护系统由现场设备部分、PLC控制系统部分、人机界面(触摸屏)和外围联络系统组成。现场设备主要包括:汽轮机本体监测系统(检测汽轮机转速、轴向位移、轴承瓦振动、汽缸相对膨胀等)、压力检测系统(检测润滑油压力、安全油压油、凝汽器真空度)、油温检测系统(检测各轴承回油的温度)、磁力油路遮断停机系统;PLC控制系统包括:冗余的PLC控制器、信号隔离继电器、驱动继电器和接触器;外围联络系统包括:DCS控制系统、汽轮机转速负荷调节系统。系统结构如图1所示。整体系统构成了现场数据采集处理、监视和现场设备控制。
3 硬件设计
由于汽轮机保护系统的重要性,决定了该系统在任何时候不容许出现误动作或拒动作,因此作为逻辑控制单元的PLC一般选用国内外品质高、稳定性好的产品,例如AB-ControLogix系列、GE-PAC7i系列、施耐德公司Modicon QUANTUM系列产品。
以下以选用AB-ControLogix系列PLC为例对系统进行说明,系统采用双机热备冗余配置,控制核心部件(CPU)配置两套,分别安装在两个独立的机架,两个机架的CPU通过光纤连接的同步模块同步热备运行,在任一套CPU及相关部件出现故障或错误时,会无扰动切换到另一套CPU,保证了系统的可靠稳定运行。PLC的IO模块安装在独立的IO机架,IO与CPU的通讯方式为冗余ControlNet网络。PLC的开关量输入输出点都选用继电器隔离,彻底防止了现场的干扰信号对系统的不良影响,保证了系统能够长期可靠运行。
人机交互单元选用Allen-Bradley 公司的PV1000 彩色工业触摸屏产品,在触摸屏上可以进行监视、操作和运行参数记录,触摸屏是系统的操作员站,人机对话简单方便、系统组态便于修改和扩充,并且触摸屏具有不死机可以长期稳定运行的优点。触摸屏与CPU的通讯方式也是通过冗余ControlNet网络。
汽轮机保护系统的PLC结构示意图如图2所示。由图可以看出,在保护系统投入正常运行后,如果一套CPU出现故障或一条通讯介质接触不良,不会影响保护系统正常运行。
4 软件设计
软件设计包括两部分:PLC控制保护逻辑和触摸屏监视、操作记录画面组态。PLC控制保护逻辑采用梯形图编写,保护逻辑程序选择连续性任务在全部时间内运行,使保护逻辑程序始终运行。保护逻辑程序主要包括各项保护投退部分,报警与显示部分,跳闸动作部分,事件记录和SOE记录等几个部分。
由于采用了触摸屏,保护投退由一个总保护开关,扩展为每一项保护设置独立的保护开关,各分项保护开关在触摸屏上组态实现。各项保护投退相当于汽轮机保护系统的开环运行或闭环运行的选择钥匙,在保护退出时,汽轮机保护系统属于开环运行,此时保护对应的运行参数异常,保护系统只发出报警,不会动作跳闸;在保护投入时,汽轮机保护系统属于闭环运行,此时保护对应的运行参数异常,保护系统发出报警,同时动作跳闸,关闭主汽门。分项保护开关的设计,使得保护系统更灵活,现场工作人员可以根据运行情况投入部分重要的保护功能,不满足条件的保护暂时不投入。
PLC采集到的现场汽轮机报警信号、跳闸信号分别在触摸屏报警画面和跳闸画面显示,取代了以前用大量光字牌显示报警跳闸的方法,大大减少了日常维护量。跳闸动作信号进行跳闸记录,为分析汽轮机跳闸原因提供了很好的依据。PLC保护逻辑与触摸屏之间通过对应的CotrolNet通讯协议进行实时通讯,从而保证了汽轮机运行参数在触摸屏上显示和进行事件记录,在触摸屏上进行的操作实时被PLC扫描,并在程序中执行。
SOE记录要求达到毫秒级别,需要在PLC中通过程序实现,并在PLC中记录,把记录结果在触摸屏上显示。
5 结论
根据上述的思路和方法,由PLC控制的汽轮机保护系统已先后在沈阳新北热电厂、寿光巨能热电厂、通辽盛发热电厂等数十个用户单位的汽轮机设备上投入运行,结果表明系统的设计是合理的,系统在现场运行稳定可靠,不仅提高了设备的自动化运行水平,减轻了现场人员的维护量,而且延长了汽轮机的运行寿命,有着明显的经济效益和社会效益。
一般工业控制系统既包括弱电控制部分,又包括强电控制部分。为了使两者之间既保持控制信号联系,又要隔绝电气方面的联系,即实行弱电和强电隔离,是保证系统工作稳定,设备与操作人员安全的重要措施。
电气隔离目的之一是从电路上把干扰源和易干扰的部分隔离开来,从而达到隔离现场干扰的目的。
一、信号隔离
信号的隔离目的之一是把引进的干扰通道切断,使测控装置与现场仅保持信号联系,不直接发生电的联系。工控装置与现场信号之间常用的隔离方式有光电隔离、脉冲变压器隔离、继电器隔离和布线隔离等。
1.光电隔离
光电隔离是由光电耦合器件来完成的。其输入端配置发光源,输出端配置受光器,因而输入和输出在电气上是完全隔离的。由于光电耦合器的输入阻抗(100Ω~1kΩ)与一般干扰源的阻抗(105~106Ω)相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光。另外光电耦合器的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF),所以能阻止电路性耦合产生的电磁干扰,被控设备的各种干扰很难反馈到输入系统。
光电耦合器把输入信号与内部电路隔离开来,或者是把内部输出信号与外部电路隔离开来,如图1所示。开关量输入电路接入光电耦合器后,由于光电耦合器的隔离作用,使夹杂在输入开关量中的各种干扰脉冲都被挡在输入回路的一侧。由于光电耦合器不是将输入侧和输出侧的电信号进行直接耦合,而是以光为媒介进行耦合,具有较高的电气隔离和抗干扰能力。
目前,大多数光电耦合器件的隔离电压都在2.5kV以上,有些器件达到了8kV,既有高压大电流大功率光电耦合器件,又有高速高频光电耦合器件(频率高达10MHz)。常用的器件如4N25,其隔离电压为5.3kV;6N137,其隔离电压为3kV,频率在10MHz以上。
2.脉冲变压器隔离
脉冲变压器的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁芯的两侧,这种工艺使得它的分布电容特小,仅为几个pF,所以可作为脉冲信号的隔离元件。脉冲变压器传递输入、输出脉冲信号时,不传递直流分量,PLC使用的数字量信号输入/输出的控制设备不要求传递直流分量,因而在工控系统中得到了广泛的应用。
图2是脉冲变压器的应用实例。电路的外部信号经RC滤波电路和双向稳压管抑制常模噪声干扰,然后输入脉冲变压器的一次侧。为了防止过高的对称信号击穿电路元件,脉冲变压器的二次侧输出电压被稳压管限幅后进入测控系统内部。一般地说,脉冲变压器的信号传递频率在1kHz~1MHz之间,新型的高频脉冲变压器的传递频率可达到10MHz。
3.继电器隔离
继电器的线圈和触点没有电气上的联系,因此,可利用继电器的线圈接受信号,利用触点发送和输出控制信号,从而避免强电和弱电信号之间的直接接触,实现了抗干扰隔离。
图3是继电器输出隔离的实例示意图。在该电路中,通过继电器把低压直流与高压交流隔离开来,使高压交流侧的干扰无法进入低压直流侧。
4.布线隔离
将微弱信号电路与易产生噪声污染的电路分开布线,基本的要求是信号线路必须和强电控制线路、电源线路分开走线,而且相互间要保持一定的距离。配线时应区别分开交流线、直流稳压电源线、数字信号线、模拟信号线、感性负载驱动线等。配线间隔越大,配线越短,则噪声影响越小。但是,实际设备的内外空间是有限的,配线间隔不可能太大,只要能维持低限度的间隔距离便可。
附表列出了信号线和动力线之间应保持的小间距。如果受环境条件的限制,信号线不能与高压线和动力线等离得足够远时,就得采用诸如信号线路接电容器等各种抑制电磁感应噪声的措施。
二、供电系统的隔离
采用1∶1隔离变压器供电是传统的抗干扰措施,对电网尖峰脉冲干扰有很好的效果。
图4是典型的隔离变压器原理图。它抗干扰的原理是一次侧对高频干扰呈现很高的阻抗,而位于一次、二次绕组之间的金属屏蔽层又阻隔了一、二次侧所产生的分布电容,因此一次绕组只有对屏蔽层的分布电容存在,高频干扰通过这个分布电容而被旁路入地。1∶1隔变效果的好坏,往往取决于屏蔽层的工艺。好选用0.2mm厚的纯铜板材,一次侧、二次侧各加一个屏蔽层。通常,一次侧的屏蔽层通过一个电容器与二次侧的屏蔽层接到一起,再接到二次侧的地上。也可以一次侧的屏蔽层接一次侧的地线,二次侧的屏蔽层接二次侧的地线。并且接地引线的截面积也要大一些好。1∶1隔变还有效地隔离了接地环路的共模干扰。
1. 交流供电系统的隔离
由于交流电网中存在着大量的谐波、雷击浪涌、高频干扰等噪声,所以对由交流电源供电的控制装置和电子电气设备,都应采取抑制来自交流电源干扰的措施。采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰。但是,普通变压器却不能完全起到抗干扰的作用,这是因为,虽然一次绕组和二次绕组之间是绝缘的,能够阻止一次侧的噪声电压、电流直接传输到二次侧,有隔离作用。然而,由于分布电容(绕组与铁心之间、绕组之间、层匝之间和引线之间)的存在,交流电网中的噪声会通过分布电容耦合到二次侧。为了抑制噪声,必须在绕组间加屏蔽层,这样就能有效地抑制噪声,消除干扰,提高设备的电磁兼容性。
图5a、5b所示为不加屏蔽层和加屏蔽层的隔离变压器分布电容的情况。在图5a中,隔离变压器不加屏蔽层,C12是一次侧和二次侧之间的分布电容,在共模电压U1C的作用下,二次绕组所耦合的共模噪声电压为U2C,C2E是二次侧的对地电容,则从图可知二次侧的共模噪声电压U2C为:
U2C=U1CC12/(C12+C2E)
在图5b中,隔离变压器加屏蔽层,其中C10、C20分别代表一次侧和二次侧对屏蔽层的分布电容,ZE是屏蔽层的对地阻抗,C2E是二次侧的对地电容,则从图可知二次侧的共模噪声电压U2C为:
U2C=〔U1CZE/(ZE+1/jωC10)〕〔C2E/(C20+C2E)〕
由于C2是屏蔽层的对地阻抗,在低频范围内,ZE<<(1/jωC10),所以U2C→0。由此可见,采取屏蔽措施后,通过隔离变压器的共模噪声电压被大大地削弱了。
图6所示为交流电源抗干扰的综合方案。为了将测控系统和供电电网电源隔离开,消除因公共电阻引起的耦合,减少负载波动的影响,同时也为了安全,常常在电源变压器和低通滤波器之前增加一个1∶1的隔离变压器。
目前,国外已研制成功了专门抑制噪声的隔离变压器(简称NCT),这是一种绕组和变压器整体都有屏蔽层的多层屏蔽变压器。这类变压器的结构,铁心材料、形状及其线圈位置都比较特殊,它可以切断高频噪声漏磁通和绕组的交链,从而使差模噪声不易感应到二次侧,故这种变压器既能切断共模噪声电压,又能切断差模噪声电压,是比较理想的隔离变压器。
2.直流供电系统的隔离
当控制装置和电子电气设备的内部子系统之间需要相互隔离时,它们各自的直流供电电源间也应该相互隔离,其隔离方式如下:种是在交流侧使用隔离变压器,如图7a所示;第二种是使用直流电压隔离器(即DC/DC变换器),如图7b所示。
采用了电气隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。