浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7212-1AB23-0XB8一级代理

西门子模块6ES7212-1AB23-0XB8一级代理

 一、引言:
  数采和远程监控传统以来都只有数据采集功能,在需要比较实时的控制和数据处理时,会显得力不从心。PLC作为工业控制的核心部件,其在网络、通信等方面的能力越来越强,适应能力也越来越强。
  数采和远程监控系统传统以来都用不起PLC,但随着国产PLC市场占有量的提升,PLC的价格也比以前更加有优势,使用PLC做DAS系统或者用PLC平台开发数采系统将是大势所趋或者说相当有吸引力的选择。
  德维森公司的V80小型PLC在供热、交通监控、楼宇监控等行业有相当多的成功应用,下面以V80在东北某供热网监控为例进行讲解。
  
  二、远程监控系统:
  供热网远程监控系统的示意图如下:
  


  


  V80负责现场换热子站的温度、压力、流量采集,并根据这些采集量进行流量控制,以达到节能的作用。同时V80根据室外气温的变化通过调节一级管网电动阀门的开度来及时控制二级管网的供回水温度,通过调度给定的控制曲线,各个换热站可以独立运行,保证运行参数始终在给定的范围内运行。同时调度在中央调度室可以根据需要随时干预子站的运行,调度可以遥控子站的电动阀门,调整运行参数。系统配置GPRS DTU,可以实现温度的控制、补水泵变频的远程控制。
  上位机可以选用组态王、FIX等商用组态软件,并与数据库结合起来,对所有数据进行存储和分析,并可以配合优化软件进行优先控制。
  
  三、德维森的远程监控系统解决方案:
  


  


  德维森公司针对前面提到的各种问题,提出了一个更为优胜的方案:
  
  该方案的特点于下:
  1、强大的网络和通信功能
  德维森的所有PLC型号都可以同时支持2个以上的通信口,并可以利用RS485通信口进行组网,把多达128台V80小型PLC组进同一个现场总线网络内,为主的PLC上带一个GPRS DTU模块,为监控网络提供一个透明的上网的通道。
  选用GPRS DTU代替无线RTU也可以在成本上大大的降低,在有电话线的地方仅可以选用Modem,使整个系统的造价达到优。
  
  2、功能强大的CPU模块:
  M32DT模块是16路数字量输入和16路晶体管输出的CPU模块,本身带有两个通信口,一个RS232和一个RS485,内部带MODBUS主从通信协议和FREE通信协议,可以与各种HMI或者各种组态软件通信,目前德维森为各吹塑成型机厂商提供的通信协议库文件也使各厂商自行开发上位机软件提供了相当多的便利。
  M40DT内带FLASH存储器,可以将各种参数存储在本地,同时还带有掉电保持的RAM芯片,可以保证使用的可靠性和便利。
  M40DT高速的运算速度和完备的数学运算能力更使其在需要大更通信和模拟量处理的环境从容应对。
  
  3、可靠性高,抗干扰能力强
  整个系统的宽温和宽电源供电设计使其可以在任何恶劣的环境中游刃有余,另外V80全系列产品都通过了CE认证,也为用户产品的出口打下了良好的基础。
  
  4、编程简单方便
  V80 PLC支持IEC61131-3的PLC语言标准,可以简单方便的进行复杂控制编程,同时其支持在线编程,也就是在运行态下可以进行调试和修改程序,使监控现场的在线升级和扩展变得相当简单。
  
  5、
  一个32点经济型V80小型PLC M32DT-AC-E的价格比同样点数的数采模块还要便宜,同时还带有强大的图形化编程功能使其成为了一个强有力的分布式监控平台。
  
  6、可与其它厂商的产品方便的互通
  可与任何第三方厂商的数采模块、人机界面、触摸屏、文本屏、变频器、智能仪表进行通信。
  
  7、商业的组态软件
  选用商业的组态软件,使监控的灵活性和通用性得到大大提高,并可以加挂各种数据库。
  
  四、结论:
  德维森作为国内技术力量强的国产PLC研发、生产、服务提供商为众多的数采和远程监控系统提供全面的解决方案,为客户将采集、控制、远程监控和优化合而为一。



1 概述

可编程逻辑控制器(PLC)作为新一化的工业控制装置,结构简单、性能全面、可靠性高。其突出的优点是:使用方便,具有杰出的实时功能和强大的通讯能力。在其小小的单元中,包含了强大的功能,使之能够独立地或通过网络分布式系统轻而易举地完成复杂的控制任务,很小的投入即能获得有效的自动化系统,在工业现场领域深受欢迎,特别是经过特殊模块配置后,可以在保持简单易用的特点的同时大大扩展其应用领域。PLC的体积小,结构紧凑,编程方便,梯形图编程方式面向一般电气技术人员,操作简单,维修方便,易于实现机电一体化,因而在变电站综合自动化中得到了广泛的应用。

中小变电站综合自动化中的自动化设备有:可编程自动化监控装置、可编程变压器自动化屏、可编程微机计量屏、可编程微机线路保护屏、可编程微机同期系统、可编程中央信号屏、可编程电容屏、可编程微机直流电源系统等均应用了PLC为其智能化单元,并且都能够挂网运行,方便地实现遥信、遥测、遥控功能,取代了传统的RTU。本文主要介绍由PLC构成的变压器自动化部分在自动化变电站中的实现。适用于老式变电站的自动化改造及新式变电站的建设。

2 变压器自动化的构成方案

在中小型变电站中,一台变压器及其配套设备一般包括:断路器及操作单元、变压器、变压器控制屏、避雷器、差动保护屏、变压器接地系统等。下面以两种情况分别讲述变压器的自动化构成方案。 

2.1 变压器及配套设备为常规设备

如果断路器及操作单元、变压器、差动保护屏、变压器防雷接地系统等均为不含智能单元及计算机接口的常规设备,那么只需将变压器控制屏部份选用可编程(PLC)变压器自动化屏,就能构成比较完备的变压器自动化系统。其系统框图如图1所示,变电站中控室内的变压器控制屏及其配套设备分别与可编程变压器自动化屏通过电缆直接连接,进行信息交换。中控室或远方的主计算机监控系统通过对可编程变压器自动化屏的监控来实现对变压器的监控,其中的信息交换由主计算机监控系统中的工控机(IPC)与可编程变压器自动化屏中的PLC通过工业现场通讯网络来实现。这种变压器自动化系统一般适用于改造旧站或建设资金规模不大的自动化新站。

          

2.2变压器及配套设备为智能化设备

如果断路器及操作单元、变压器、差动保护屏、变压器防雷接地系统等均已含有智能单元及计算机接口,那么变压器控制屏部份选用可编程(PLC)变压器自动化屏,就可以非常方便地构成功能强大的变压器自动化系统。其系统框图如图2所示,变电站中控室内的变压器控制屏及其配套设备分别与可编程变压器自动化屏通过工业现场通讯网络与中控室或远方的主计算机监控系统进行信息交换。可编程变压器自动化屏与变压器及配套设备之问仅有极少量的电缆连接,整个系统显得非常简单。

3 可编程变压器自动化屏的组成及实现

可编程变压器自动化屏的硬件设备一般包括:PLC,PLC输入/输出信号隔离继电器,近地操作按钮及故障事故指示灯、报警器、智能变压器油温度巡检仪,智能信号测试议,小直流电源,通讯适配器等。其系统框图如图3。软件主要由PLC自动化监控程序和与监控主计算机(上位机)的通讯程序组成。

             

3.1 PLC的选型

从上述的被控对象(变压器)的电气特性看出,这个系统几乎是对开关量进行监控。温度模拟量及信号模拟量均有智能仪表对其监控, 智能仪表的输出触点开关量进入PLC,因此PLC只需选用基本模块及通讯模块,而不需特殊模块。接下来应确定PLC输入∕ 输出点数,统计可编程变压器自动化屏对变压器及配套设备的监控点数,一般输入不超过64点数,输出不超过40点。在实际中我们选用了北京安控科技发展有限公司研制的Rock系列PLC产品:Rock E20系列PLC产品。此产品采用先进的16位CPU,配置嵌入式实时多任务操作系统,可实现采集、运算、逻辑、定时、控制、通讯等功能,其单CPU+扩展模块,可承载32模块,测控500个I∕ O点。以RS485或Intranet进行本地扩展,以拨号Modem或GPRS等方式进行远程扩展。该产品采用插拨方式扩展、模块尺寸小巧,安装使用方便、维护简单,具有应用灵活、安全、可靠等特点。3.2 可编程变压器自动化屏的硬件

组成可编程变压器自动化屏的各部件应严格照按电气规范设计、连接。此外,与PLC相连的部份应严格按照PLC厂家技术要求进行设计、连接。

3.3 PLC的自动化监控程序

变电站的变压器组成方式不同决定了可编程变压器自动化屏PLC的监控程序的不同。在此以35KV单母线、一台主变压器为例,其开机准备条件及开机程序如图4,停机程序如图5。

                 

3.4 PLC与监控主计算机串行通讯的实现

计算机与PLC之间的通讯是通过传送命令块和数据块来实现的,其命令块格式如下:

  STX        

 CMD

DATA

 ETX

SUM(H)

 SUM(L)

 开始符 

命令号

起始地址及字节数

结束符

检验(高位)

检验(低位)


数据块格式如下: 

STX        

DATA

 ETX

SUM(H)

 SUM(L)

 开始符 

起始地址及字节数

结束符

检验(高位)

检验(低位)

所有的块均由ASCII码组成,其格式如下:

0

b0

b1

b2

b3

b4

b5

b6

p

1

开始位

7位数据

偶校验

停止位

 

低4位

高3位



4 可编程变压器自动化屏的运行

可编程变压器自动化屏在变压器的自动化运行中处于实时监控的重要位置,它通过输入∕ 输出信号隔离继电器按变电站变电设备(隔离刀闸、断路器、电压互感器、电流互感器、变压器防雷接地系统等设备)的状态 ∕ 控制信号,可编程逻辑控制器(PLC)将上述信号按具体的自动化流程进行实时控制,并与监控主计算机通过网络传递数据。完成变压器的开、停,运行维护与继电保护(过电流保护、电流速断保护、差动保护、瓦斯保护和过负荷保护等)。它不仅使变压器处于闭环自动控制之中,而且使变压器自动化与测控保护系统协调运行,从而使整个变压器处于佳运行状态。由于PLC自身的特性,每个输入∕ 输出信号都有指示灯,使得变电站这个信号比较分散的场所维护检修工作变得异常容易。 

5 结束语

本系统已在我市多个变压器的自动化工程中成功投运。我们发现其处理故障十分容易,既缩短了停电维护时间、运行维护费用又很低。运行中发生诸如变压器的瓦斯继电器触点进水短路、中控室各接触器电触点断线、变压器控制回路等故障均能及时发现、报警与自动进入其处理程序,并能在监控主计算机上集中监视。用PLC构成的应用环境,可以构成满足不同用户或同一用户不同时期对系统的需求,改变系统的组织方式只需重新输入PLC监控程序即可,我们对此相当满意。

温度是工业生产对象中主要的被控参数之一,本文以温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应用。该系统具有广泛的应用范围:如大型家禽孵坊、电器生产行业和机械加工的某些工艺流程中……

一、控制要求

    将被控系统的温度控制在某一范围之间,当温度低于下限或高于上限时,应能自动进行调整,如果调整一定时间后仍不能脱离不正常状态,则采用声光报警,来提醒操作人员注意,排除故障。
     系统设置一个启动按钮来启动控制程序,设置绿、红、黄三台指示灯来指示温度状态。当被控系统的温度在要求范围内,则绿灯亮,表示系统运行正常;当被控系统的温度超过上限或低于下限时,经调整且在设定时间内仍不能回到正常范围,则红灯或黄灯亮,并伴有声音报警,表示温度超过上限或低于下限。
    该系统充分利用电气智能平台现有设备,引入PLC和变频器于系统中,将硬件模拟和软件仿真有机结合,有效的运用了平台资源。本文通过对该系统的阐述,详细介绍了PLC和变频器在模拟量信号监控中的运用。

二、控制系统原理及框图

    该系统共涉及四大部分,包括温度传感器、变送器、PLC温度监控系统和外部温度调节设备。首先,选取监控对象,在其内部(比如孵坊)选取四个采样点,利用四个温度传感器分别采集这四点温度后;通过变送器将采集到的四点温度的采样值转换为模拟量电压信号,从而得到四个采样点所对应的电压值,输入到PLC的四个模拟量输入端口;PLC温度监控系统将这四点温度读入后,取其平均值,作为被控系统的实际温度值,将其与预先设定的正常温度范围上下限相比较,得出系统所处状态,并向外部温度调节设备输出模拟量控制信号;外部温度调节设备根据输出的模拟量的大小来调节温度的上升与下降或保持恒温状态。
    本文以0~10V来对应温度0~100℃,设置40~60℃为系统的正常温度范围,对应的模拟量电压为4~6V,也即40℃(4V)为下限,60℃(6V)为上限,调节时间设定为20S。其中,50℃(5V)为我们的温度(电压)基准值。这样,我们就将PLC温度控制系统对温度的监测与控制转变成了PLC对模拟量电压的输入与输出的控制。当被控系统的实际温度低于设定的下限(40℃)时,PLC温度监控系统经过比较运算后,通过其模拟量输出端口向外部温度调节设备输出5-10V的电压,而且输出的电压会根据被控系统实际温度值的降低而升高,从而改变外部温度调节设备,调节温度的幅度。同理,当被控系统的实际温度高于设定的上限(60℃)时,PLC温度监控系统经过比较运算后,通过其模拟量输出端口向外部温度调节设备输出0~5V的电压,而且输出的电压会根据被控系统实际温度值的升高而降低,从而改变外部温度调节设备,调节温度的幅度。而当被控系统的实际温度处于设定的温度正常范围(40—60℃)时,PLC温度监控系统经过比较后,通过其模拟量输出端口向外部温度调节设备输出5V恒定的电压,即输出电压的调节基准量,使温度调节设备保持恒温状态。

三、控制算法的原理及流程图

    PLC温度控制系统规定模拟量输入端取值范围为0~10V,本文设定其对应于温度0~100℃。要求被控系统的温度控制在40~60°C之间,也就是对应模拟量输入端口的电压范围是4~6V。同时,根据控制的需要,首先设定50℃ (对应模拟量输入端口的电压为5V)作为被控系统温度的基准值,对应设定一个输出的电压调节基准量5V。
    PLC顺序扫描梯形图程序,扫描的结果有以下几种情形。假如读取到的四个采样点的温度,经过取平均后大于上限60℃(比如70℃),将其与被控系统温度的基准值(50℃)比较,得出两者之间的差值(20℃),也即对应2V,然后用输出的电压调节基准量5V与之相减,从而得到3V作为控制信号来控制外部的温度调节(降温),接着进入下一个扫描周期,直至被控系统的温度达到正常范围(40-60℃),如果在设定的调节时间(20S)后,未能恢复到正常范围内,则采用声光报警,红灯亮;假如读取到的四个采样点的温度,经过取平均后小于下限40℃(比如20℃),将其与被控系统温度的基准值(50℃)比较,得出两者之间的差值(30℃),也即对应3V,然后用输出的电压调节基准量5V与之相加,从而得到8V作为控制信号来控制外部的温度调节(升温),接着进入下一个扫描周期,直至被控系统的温度达到正常范围(40-60℃),如果在设定的调节时间(20S)后,未能恢复到正常范围内,则采用声光报警,黄灯亮;假如读取到的四个采样点的温度,经过取平均后处于设定的正常范围40-60℃(比如45℃),则输出调节电压的基准量5V,使被控系统保持恒温状态,绿灯亮,然后进入下一个扫描周期。

四、I/O分配表

输入

输入开关量

功能

%I0.6

实验台/计算机控制切换

%I0.1(%M1)

启动开关

%I0.2(%M2)

停止开关

输出

输出开关量

功能

%Q0.1(%M7)

过低

%Q0.2(%M8)

正常

%Q0.3(%M9)

过高

%Q0.4

过低警鸣

%Q0.5

过高警鸣

%Q0.7

变频器的逻辑输入

五、程序(PLC梯形图)






六、硬件接线图

七、组态王仿真画面

    本系统不仅可以通过硬件操作来了解系统的工作原理,同时也可以通过仿真软件的监控画面来生动、直观的了解系统的工作过程。

八、变频器部分

    本系统中的变频器是用来代替外部实际的温度调节设备,目的一是介绍变频器的使用;目的二是可以直观的看到,PLC温控系统根据输入温度值的改变同时也在改变输出的模拟量控制信号。系统中对变频器的应用过程,实际上是应用变频器根据外控电压的变化来改变输出频率的特性。
    为了让其可以根据外控电压来改变频率,其参数设置如下:
    I—O  菜单中TCC设为“2C”
    I—O  菜单中AO设为“rFr”
    drc   菜单中OPL设为“NO”
    SUP   设为“rFr”


    应用PLC的模拟量检测与控制能力,实现对被控过程的温度监测和控制具有广泛的应用场合。本文以工业生产中常见的温度监测、报警与控制功能的实现为例,介绍PLC模拟量控制系统的构成、温度控制流程及程序的设计方法


展开全文
优质商家推荐 拨打电话