6ES7212-1AB23-0XB8一级代理
1 引言
恒压供水系统对于某些工业或特殊用户是非常重要的,例如在某些生产过程中,若自来水供水压力不足或短时断水,可能会影响产品质量,严重时使产品报废和设备损坏。又如当发生火警时,若供水压力不足或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。
基于上述情况对某生活区供水系统进行了改造,采用PLC作为中心控制单元,利用变频器与PID相结合,根据系统状态可快速调整供水系统的工作压力,达到恒压供水的目的,提高了系统的工作稳定性,得到了良好的控制效果。
2 系统结构与工作原理
供水系统由主供水回路、备用回路、储水池及泵房组成,其中泵房装有1#~3#共3台150kW泵机。另外,还有多个电动闸阀或电动蝶阀控制各供水回路和水流量。由于该供水网较大,系统需要供水量每小时开2台泵机向管网充压,供水量大时,开3台泵机同时向管网充压。要想维持供水网的压力不变,在管网系统的管道上安装了压力变送器作为反馈元件,为控制系统提供反馈信号,由于供水系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用PID调节器进行控制,而应采用PLC参与控制的方式来实现对控制系统调节作用。可编程序控制器选择日本松下FP1-C40型,且配有A/D和D/A模块,其原理框图如图1所示。变频器选择FRN1 60G7P-4实现电动机的调速运行。
控制系统主要由PLC、变频器、切换继电器、压力传感器等部分组成。控制核心单元PLC根据手动设定压力信号与现场压力传感器的反馈信号经PLC的分析和计算,得到压力偏差和压力偏差的变化率,经过PID运算后,PLC将0~5V的模拟信号输出到变频器,用以调节电机的转速以及进行电机的软起动;PLC通过比较模拟量输出与压力偏差的值,通过I/O端口开关量的输出驱动切换继电器组,以此来协调投入工作的电机台数,并完成电机的起停、变频与工频的切换。通过调整电机组中投入工作的电机台数和控制电机组中一台电机的变频转速,使动力系统的工作压力稳定,进而达到恒压供水的目的。
图1 恒压供水系统原理图
3 系统程序设计和PLC的I/O分配
系统程序包括起动子程序和运行子程序,其流程图如图2所示。运行子程序又包括模拟调节子程序(其流程图如图3所示)和电机切换子程序(流程图略),电机切换子程序又包括加电机子程序和减电机子程序(程序设计略)。PLC的输入、输出端子分配情况如附表所示。
图 2 起动程序流程图
图3 模拟调节流程图
附表 可编程序控制器(C40)部分输入、输出端子分配
4 系统工作过程
加上起动信号(X4)后,此信号被保持,当条件满足(即X2为“1”)时,开始起动程序,此时由PLC控制1# 电机变频运行(此时Y0、Y6、Y7亮),同时定时器T0开始计时(10s),若计时完毕X2仍亮,则关闭Y0、Y6(Y7仍亮),T2延时1s(延时是为了两方面的原因:一是使开关充分熄弧,防止电网倒送电给变频器,烧毁变频器;二是让变频带器减速为零,以重新起动另一台电机)。延时完毕,则有1#机投入工频运行,2#机投入变频运行,此时Y1、Y2、Y6、Y7亮,同时定时器T1开始计时(10s),若计时完毕X2仍未灭,则关闭Y2、Y6,(Y1、Y7仍亮,)T3延时1s,延时完毕,将2#机投入工频运行,3#机投入变频运行,(此时Y1、Y3、Y4、Y6、Y7亮,)再次等待Y7灭掉后,则整个起动程序执行完毕,转入正常运行调节程序,此后起动程序不再发生作用,直到下一次重新起动。在起动过程中,无论几台电机处于运行状态,X2一旦灭掉,则应视为起动结束(Y7灭掉),转入相应程序。综合整个起动过程,完成3台电机的起动多需要22s的时间。
运行过程中,若模拟调节器节上、下限值均未达到(即X1、X2灭),则此时变频器处于模拟调节状态(此时相应电机运行信号和Y6亮)。
若达到模拟调节上限值(X1亮),则定时器T4马上开始定时(5s)。定时过程中监控X1,若X1又灭掉,则关闭定时器,继续摸拟调节;若T4定时完毕,X1仍亮,则起动一低速(Y8亮),进行多段速调节,同时定时器T5开始定时(3s),定时完毕。若X1仍亮,则关闭此多段速,起动一更低速(Y9),同时定时器T6定时(10s)。定时完毕,若X1仍亮,则关掉Y9,此后X0很快会通,转入切换动作程序。在此两级多段速调节过程中,无论何时,若X0亮,则会关闭相应多段速和定时器,同时进行切换动作,即转入切换程序。同样,若无论何时,X1灭掉,则关闭运行多段速和定时器,转入模拟调节。
若达到模拟调节下限值(X2亮),则定时器T7马上开始定时(5s),定时过程中监控X2,若X2又灭掉,则关闭定时器,继续摸拟调节,若T7定时完毕,X2仍亮,则起动一高速(Y7、Y2),进行多段速调节,同时定时器T8开始定时(3s),定时完毕。若X2仍亮,则关闭此多段速,起动一更高速(Y8、Y9),同时定时器T9定时(10s),定时完毕。若X2仍亮,则关掉Y8、Y9,此后X3很快会通,转入加电机动作程序。在此两级多段速调节过程中,无论何时,若X3亮,则会关闭相应多段速和定时器,同时进行加电机动作,即转入加电机程序。同样,若无论何时,X2灭掉,则关闭运行多段速和定时器,转入模拟调节。
电机切换程序分为电机切除程序和加电机程序两部分。此程序动作的条件是:起动结束后无论何时X0亮,一旦条件满足,即由PLC根据电动机的运行状态来决定相应切换哪台电机,切换时只能切换工频运行电机。
若工作状态是1台变频1台工频,则立即切除工频电机,然后计数值减1,即完成此过程,再由调节程序运行,调节至满足要求为止。
若3台电机同时工作,则应由PLC来决定切除哪台工频运行电机。切除依据是3台电机对应计数器的大小,谁大切谁,切除掉一台后,要由定时器定时(5s)等待,以便变频器调节一段时间,防止连续切除动作。这主要是考虑到本系统的非线性和大小惯性因素而采取的措施。 图3运行时模拟调节子程序流程图加电机程序,其动作程序是:起动结束后无论何时X2亮,一旦条件满足,立即关掉变频运行电机和变频器,延时一段时间后(原因同上),将原变频运行电机投入工频运行,同时打开变频器和将要起动电机的变频开关,完成加电机。
同样,若原有2台电机工频工作,则X2一亮,立即开始加另一台电机(无延时),(加电机依据是判断计数值,谁小加谁)但加电机完成以后,定时器要开始定时(5s)等待,让变频器调节一段时间,防止连续加电机动作。其过程分为:1# → 2#、1# → 3#、2# → 3#、2# → 1#、3# → 2#、 3# → 1#。
5 结束语
用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。其优点是:起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命;可以消除起动和停机时的水锤效应;在锅炉和其他燃烧重油的场合,恒压供油可使油的燃烧更加充分,大大地减轻了对环境的污染。
引言
PLC作为一种高性能的控制装置,在分布式系统中得到了越来越广泛的应用。在这种控制系统中,PLC可以多种方式,如直接采用现有的组态监控软件与上位机通信,但针对小规模的控制系统,找到一种高性能价格比的通信方法,具有积极的实际意义。本文就日本三菱公司生产的FX2可编程控制器与监控中心通信方式的实现,从软、硬件两个方面来说明这个问题。随着GSM移动通信网络的迅速发展和用户的日益扩大,新技术和新业务的开发和应用就已提到十分重要的位置。短消息服务业务作为GSM网络的一种基本业务,已得到越来越多的系统运营商和系统开发商的重视,基于这种业务的各种应用也蓬勃发展起来。
以往,在无人值守的现场出现问题后,维修人员不可能讯速赶到现场排除故障,造成许多不必要的损失,所以作者设计了该采集与监控系统,将告警信息通过手机短消息的方式,发送到集中监控中心,从而实现了远程遥控、遥测、遥调、遥讯。
1. 系统的工作原理及组成
该系统主要是由两部分组成:数据采集与监控终端;集中监控中心。通信方式采用手机短消息方式,通信设备采用手机模块TC35,手机终端TC35T。TC35具有的功能:有语音、数据、短消息、FAX四种传输方式;工作在GSM900MHz和1800MHz频带范围内;工作电源3.3V---5.5V;波特率为300bps-115kbps,在1200bps-115kbps为自动波特率设置;数据传送采用AT命令集;SMS具有TEXT和PDU图形模式;P-P数据通讯速率是2400、4800、9600、14400bps。TC35T是将TC35做到工业手机中,对外提供标准的RS232接口和电源接口。将计算机的串行口与TC35T的串行口用电缆直接连接,并在计算机上添加标准的调制解调器就可以使用了。TC35T使用AT命令集工作。系统的原理框图如图1所示:
集中监控中心通过通道1发送命令,首先通过TC35T发送设置命令,初始化数据采集与监控终端,设置需要采集的模拟量和开关量,设置系统的密码,设置维修人员的手机号码;然后发送采集命令,采集各种数据量。采集完数据量后,经PLC的处理,通过通道2以短消息的方式发送到集中监控中心,中心将数据整理存入数据库中。如果数据采集与监控终端出现了故障,直接通过TC35模块发送故障信息到维修人员手机上,同时监控中心接收发自数据采集与监控终端的告警信息,并进行相应的处理,如判定告警地点、告警类型及相应的原因、及时通知值班和相关维护管理人员、对告警信息进行统计和分析、设置告警监控模块配置信息等。当故障排除后,数据采集与监控终端同样发送短消息到监控中心,通知中心故障排除,可以正常采集数据了。当然每个数据采集与监控终端都对应由维修人员。
短消息服务业务(Short Message Service)是GSM系统提供给用户的一种数字业务,它与话音传输及传真一样同为GSM数字蜂窝移动通信网络提供的主要电信业务,SMS的收发占用的是GSM网络的信令信道,不会占用普通话音信道,而且它是双向通信,具有一定的交互能力。而且SMS具有较高的可靠性,短消息发送端的用户可知道短消息是否已经到达接收端,由于短消息依靠了SMSC短消息服务中心的存储和转发机制,当接收端用户关机或不在服务区内时,SMSC会暂时保存该短消息,接收端用户如果在规定时间(通常为24小时)内重新处于工作状态,SMSC会立刻发送短消息给接收端用户,当发送成功时会返回发送端用户一个确认信号。SMS充分利用了GSM网络覆盖广的特点和全程全网的优势,具有的移动性,使得任何一个申请了短消息服务的GSM无线终端用户在全网范围内获得服务。每个短消息的信息量限制为140个八位组(7比特编码)140个英文字符或70个中文字符。如果超过此长度,则要分多次发送。
2. 硬件电路设计
系统的硬件电路包括:监控终端硬件设计;集中监控中心。
监控终端硬件包括:数据采集部分;TC35接口电路;温度传感器电路;遥调电路。
集中监控中心硬件包括:上位机;TC35T手机终端。
2.1 数据采集部分
数据的采集分为:模拟量的采集和开关量的采集。
模拟量主要采集各种工业仪表的数据,如压力、流量、温度、湿度、电压、电流等。
开关量的检测,分别为:220V交流电压检测,门禁检测。
电路原理框图如图2所示。
2.2遥调电路设计
为了能够实现远程自动调节各种现场的参数。作者设计了遥调电路。采用固态非易失性数字电位器X9313。电路图如图3所示。数字电位器是一种特殊的DAC,它的模拟量输出不是电压或电流,而是电阻。滑动单元的位置是由CS、U/D、INC三个输入端控制。当CS为高,INC为高时,滑动端的位置可以被储存在一个非易失性存储器内,因此在下一次上电工作时可以被重新调用。当电位器的滑动端移到某一新位置时,而保持INC为低,CS为高时,此位置不存储。VH、VL、VW相当于一般电位器的三个端。
图3 遥调电路
2.3温度传感器电路设计
为了实时监视数据采集与监测终端的温度变化,当温度超过上限值时启动排风装置。当温度低过下限值时启动加温装置,作者设计了温度传感器电路。由于采集的温度范围属于常温范围,所以采用晶体管传感器LM335。它的输出电压与热力学温度成正比,灵敏度10mv/c。输出后的电压经过LM358放大器的放大后送A/D转换器。电路图如图4所示。
图4 温度传感器电路
2.4 TC35接口电路设计
TC35模块主要是由射频天线、内部FLASH、GSM基带处理器、匹配电源和一个40脚的ZIP插座组成。TC35接口电路设计主要是40针的电缆与单片机的接口。如图所示5。1~5脚提供3.3~5.5V峰值2A的直流电源;6~10接地;15脚为点火信号,接到单片机的P1.7,可以通过软件启动模块。16脚~23脚是RS232串口的功能引脚,18脚、19脚分别为发送RXD和接收TXD引脚。24脚~29脚对应的是SIM卡的引脚。32脚为指示灯引脚,当未插入SIM卡或40脚的电缆没有接好或者模块正在入网时,指示灯处于闪亮状态,亮600ms 灭600ms;当模块登录网络时,指示灯亮75ms灭3s。
2.5 电平转换器设计
FX2系列PLC的编程接口采用RS-422标准,而计算机的串行口采用RS-232标准。因此,作为实现PLC计算机通信的接口电路,必须将RS-422标准转换成RS-232标准。RS-232与RS-422标准在信号的传送、逻辑电平均不相同。RS-232采用单端接收器和单端发送器,只用一根信号线来传送信息,并且根据该信号线上电平相对于公共的信号地电平的大小来决定逻辑的“1”。RS-422标准是一种以平衡方式传输的标准,即双端发送和双端接收,根据两条传输线之间的电位差值来决定逻辑状态。RS-422电路由发送器、平衡连接电缆、电缆终端负载和接收器组成。它通过平衡发送器和差动接收器将逻辑电平和电位差之间进行转换。作者选用MAXIM公司的MAX232实现RS-232与TTL之间的电平转换。MAX232内部有电压倍增电路和转换电路,仅需+5V电源就可工作,使用十分方便;选用MAX485实现RS-485与TTL之间的转换。每片MAX485有一对发送器/接收器,由于通信采用全双工方式,故需两片MAX485,另外只需外接4只电容即可。
图5 TC35接口电路
3.软件设计
系统的软件设计包括:下位机软件设计;上位机软件设计;下位机与上位机通信软件设计。
3.1短消息PDU格式分析及实用的AT命令
发送和接收SMS信息有两种方式:基于AT命令的Text Mode(文本模式)和基于AT命令的PDU(protocol debbbbbbion unit) Mode模式。西门子的手机大多只支持PDU模式,在PDU模式下短信息正文经过编码后转换成UNICODE码被传送。由于我们采用的是西门子的TC35手机模块和TC35T手机终端,所以本文主要探讨PDU模式的发送和接收。
下面通过对发送的短消息格式分析,来介绍SMS PDU的数据格式。假设准备发送中文短消息内容为“晚上好123”。首先,将TC35T与计算机的串口相连,并打开计算机的超级终端:
3.1.1发送短消息的具体操作过程如下(带下划线字符为响应信息,{}内为注释):
AT
OK {计算机与手机的连接成功,这时就可以输入各类GSM AT指令了}
AT+CNMI=1,1,2
OK {设置收到短消息提示}
当模块收到短消息时,给出回应:
例如:+CMTI:“SM”,4
AT+CMGF=0
OK {设置模块工作的模式:0为PDU模式,1为文本模式}
AT+CMGS=26{发送短消息的字节数}
>0891 683108200905F0 0103 0D91 683199312523F9 3208 0C 665A4E0A597D003100320033//键入Ctrl+Z,看到提示符->出现在后一个数字后面,说明系统已经收到了命令。系统会返回操作的结果。
OK {OK表示成功,ERROR表示发送失败}
+CMGS:32
下面分析这条信息:
08:表示短消息中心地址长度
91:表示短消息中心号码类型
683108200905F0:表示短消息房屋中心号码
0103:表示发送短消息的编码方式
0D:表示目的地址长度
91:表示目的地址类型
683199312523F9:表示目的地址,即接收短消息的手机号码为:
3208:表示发送中文字符方式
0C:表示短消息长度
665A4E0A597D003100320033:表示发送中文字符的UNICODE码
665A {晚} 4E0A{上} 597D{好} 0031{1} 0032{2} 0033{ 3}
3.1.2模块接收短消息的分析:
AT+CMGR={阅读短消息的内容,Index 表示短消息存放的位置}
AT+CMGL= {列表短信息:stat =0,列未读过的短消息;stat =4,列所有的短消息}
+CMGL: 1,2,,24 {1表示信息个数,2表示未发信息,24表示信息总容量}
AT+CMGD={删除短消息,Index 表示短消息存放的位置}
OK {删除成功}
3.2 下位机软件设计
包括:数据采集及A/D转换程序;越限报警程序。
3.3上位机软件设计
包括:监控中心主界面设计;数据库程序设计。
3.4下位机与上位机通信软件设计
因为下位机与上位机通信是通过短消息来完成的,所以通信软件设计的关键是单片机如何发送AT命令。
4.结束语
本文采用短消息业务完成数据采集与监测终端与控制中心的通信。实现了数据采集与监测终端的遥控,远程控制电源的通断;遥测,远程测量各种开关量;遥调,远程调节各种增益;遥讯,远程查询采集各种模拟量。短消息业务具有永远在线、不需拨号、价格便宜、覆盖范围广等优势,特别适用于需频繁传送小数据量的应用,还适用于偏远地区、架设通信线路困难的地方。对于数据采集与监测终端来说,它一般放在无人值守地区,应用短消息业务来传送数据为合适。作者设计的该系统现在已经投入运行,实践证明了该系统工作非常的可靠。