汽轮机由锅炉产生的高温高压蒸汽带动高速运转,是火力发电厂的关键动力设备,汽轮机的本体保护系统(ETS)是发电厂对系统可靠性要求高的子系统。传统上,200MW以下机组的汽机本体保护都是用继电器搭建的,可靠性差,保护逻辑修改麻烦,不能与主控制系统构成有效的通讯连接。若与电厂主DCS合并在一起控制,则因DCS处理周期较长等原因无法满足快速保护要求,一般都不采用。近年来PLC因其可靠性高、处理速度快、逻辑修改方便等特点在汽机本体保护中得到了广泛的应用。
下面介绍和利时公司承担的几个火电厂项目中采用和利时PLC作为ETS应用的实例。
合肥发电厂#3机为125MW超高压中间再热凝汽式汽轮机,进汽压力为13Mpa,进汽温度535℃,转速3000转/分钟。汽机本体保护采用和利时公司的PLC与继电器模块并存的方式,PLC独立执行保护程序,同时通过Profibus-DP与主DCS控制器通讯,将保护过程状态信息上传DCS,使两套系统实现无缝连接。此项目于2000年9月投运,经现场使用,用户反映良好。
在耒阳电厂#1机(200MW)DCS改造中,出于对ETS可靠性的考虑,用户要求必须实现双机热备控制,我们向用户推荐了两套PLC并存的汽机本体保护方案,从现场来的过程信号经信号分配器同时输入到两套PLC系统中,两个CPU执行相同的程序,运算结果经处理后变成单一的输出送到现场。在这种方案中,任何一台PLC的故障都不会影响保护系统正常工作。此方案得到厂方认可,于2001年5月投运,运行稳定、可靠。
在以上两个电厂ETS系统成功使用后,和利时公司相继赢得了沈阳皇姑热电厂、武汉晨鸣热电厂等用户的信任,和利时PLC在一批中小汽机的本体保护中得到应用。
锅炉吹灰系统是锅炉控制系统的一个子系统,作用是定时用高压蒸汽吹去附着在水冷壁、过热器、尾部烟道上的煤灰,以避免煤灰影响热效率。镇海热电厂#3 机是200MW机组,锅炉额定蒸汽流量670吨/小时,按工艺要求应每周进行一次吹灰,并且其过程可在主DCS上操作和监视。为此用户选择和利时PLC与主DCS构成通讯系统,PLC接受主DCS的指令启动吹灰程序,过程状态通过网络传送到主DCS,进而在DCS的操作站显示,操作员也可以通过人机界面人工干预吹灰进程。
汽机本体保护、锅炉吹灰等系统逻辑简单,可靠性要求高。和利时PLC作为高性价比的PLC系统,在火力发电厂项目中与DCS系统配合,既有效地提高了控制水平,又为用户节省了大量投资。同时和利时PLC出色的通讯能力使得它可以通过Profibus、Interbus、CAN或Ethernet与多种DCS构成互补的、适用于火力发电厂的控制系统。
1 前言
随着我国电力工业的迅速发展,火电厂的装机容量和单机容量都日益增大,热工保护系统的规模也大幅度上升,对热工保护系统的控制方式、运行水平的要求也越来越高。
热工保护的主要作用是当机组在启停和运行过程中发生危及设备和人身安全的故障时,自动采取保护或联锁措施,防止事故产生和避免事故扩大,从而保证机组的正常启停和安全运行。热工保护是通过对设备工作状态和机组运行参数的严密监视,发生异常情况时,及时发出报警信号,必要时自动启动或切除某些设备或系统,使机组维持原负荷运行或减负荷运行。当发生重大故障而危及机组设备时,停止机组(或某一部分)运行,避免事故进一步扩大。
发电机组的安全可靠性对本机、对电网乃至对国民经济来说都极为重要,因此,保护控制系统的安全可靠性,对保障机组的安全稳定运行显得十分关键。
2 原有热工保护系统改造的必要性
保护装置在机组正常运行时是长期不动作的,而一旦出现异常情况却要求必须可靠的立即动作,因此对于热工保护装置应有必要的监视和试验手段,以确保热工保护装置本身动作的正确和可靠。
机组运行的安全可靠,不仅依赖于各设备的安全可靠性能,而且同各类保护控制装置的准确性和可靠性密切相关。电厂原有热工保护装置较落后且投运时间较长,保护系统由继电器组成控制回路,回路硬接线多,加上继电器长期带电工作,继电器触点易老化,导致接触不良,易产生拒动或误动的情况。大修期间需对继电器进行测试,以确保继电器工作正常,大大增加了热工人员的维护工作量。而且随着运行时间的越来越长,故障点相应增多,维护工作量越来越大,严重影响着机组的安全运行,因此亟待进行改造。
3 热工保护系统改造的设计思想
系统设计的出发点是提供可靠、高效的产品,有效地提高火力发电厂热工保护系统的控制水平,给发电机组的安全、经济运行提供保障,同时实现减员增效的目的。
由于微电子技术、计算机技术和通信技术的发展,PLC已发展成为新一代工业控制机。它具有编程组态方便、硬件配置灵活、高可靠性和适应工业恶劣环境等优点,已经越来越多的被应用于各个工业控制领域。
新系统采用“上位机+PLC”方式,应用计算机通讯技术和PLC控制技术,对多个输入输出信号实现动态实时监控,具有输入输出信号状态显示、保护动作记录、报表打印、保护联锁试验等功能。
4 可编程控制器(PLC)的特点
4.1 功能丰富
PLC具有丰富的处理信息的指令系统及存储信息的内部器件,可以进行各种逻辑问题处理以及数据的运算。
PLC不仅能完成复杂的控制逻辑,而且也能实现模拟量控制和智能控制;并能实现远程通讯、计算机联网及上位机监控等功能。
4.2 编程方便
PLC是为取代传统的继电器控制逻辑而设计的,它沿用了继电器原理图或梯形图的编程方法,包含有触点、连线和线圈等概念。PLC一般采用梯形图编程,可由非计算机人员在使用现场完成,程序可以在线修改。
4.3 系列化与标准化程度高
PLC在结构、形式、编程语言、通讯等方面大同小异,且各种PLC产品均形成了适用于不同控制要求的系列产品。因此,PLC应用于发电厂的控制系统将使系统的设计及硬件配置更为经济合理。
4.4 开放的通讯功能
PLC既具有各PLC之间的协议通讯接口,也具有多种的通讯方式,如:RS232接口方式硬件成本低,经济性好,目前较常用,但传送距离短、速率低;RS485接口方式克服了RS232的一些缺点,传送距离大(大可达1.2Km); CAN方式接口传送速度快,大1~2M/S,传送距离可达1.0Km,误码率低; 以态通讯方式传送速度非常快(10Mbit/S),同时可以实现超远距离的传输,只是硬件和传送介质的成本略高,用户组成大型控制系统时,可根据外围设备进行方便的选择。
4.5 PLC的选择
根据保护系统所需要的输入输出点数、节点容量、系统功能等的要求,采用欧姆龙公司的SYSMAC C200HG PLC对保护系统进行改造,C200HG-CPU63的各项性能指标如下表所示:
项目 功能
存储器 用户存储器(UM) 15.2K字
普通DM 6.144字(DM0000-DM6143)
固定DM 512字(DM6144-DM6655)
扩展DM 0-3000字(DM7000-DM9999)
扩展DM存储器(EM) 6.144字(EM0000-EM6143)
I/O分配 扩展机架 3个机架
I/O单元 单元号0-9,A-F
特殊I/O单元 单元号0-9,A-F
指令执行时间 基本指令 0.156μs
MOV(21) 0.625μs
ADD(30) 16.65μs
I/O刷新时间 0.7ms
通讯方式 RS232C端口
时钟功能 具备时钟功能
5 改造后热工保护系统的主要构成
改造后的保护系统主要由PLC控制器和上位计算机两大部分组成,通过RS232电缆通讯。
C200HG PLC控制器配置包括CPU机架和扩展机架, CPU机架由四部分组成:CPU底板、C200HG CPU、电源单元、I/O单元。扩展机架由三部分组成:扩展底板、电源单元、扩展I/O单元。改造后的保护系统结构示意图如下:
6 PLC与上位机的串行通讯
PLC接收上位机发送过来的开启、停止信号,通过梯形图编制的逻辑回路来控制相应的输出点,从而实现对外部设备和装置的控制。PLC与上位机采用串行通讯格式,ASCII码,7位数据位,2位停止位,奇偶校验位,通讯速率为9600bit/s。通讯连线方式如下图2所示:
7 改造后的热工保护系统特点
a 系统结构简单可靠,组件式插接,便于安装维护。I/O模件卡件式设计,可灵活、方便的进行扩充。
b 保护系统采用双电源供电,确保了系统稳定、连续的工作。
c 对PLC采用梯形图的组态编程方式,可方便的进行组态、监视和修改。通过梯形图编程可实现相应的保护联锁功能和在线编辑,系统工作安全可靠。
d 采用上位机监控,可实现报表打印、报警查询、状态监视、保护联锁试验记录等多种功能。
e 对输入信号状态进行记录,确认其动作或恢复的时间,给事故分析提供准确的依据。
8 小结
a 改造后的热工保护系统由上位机和可编程控制器PLC组成,对原有的由继电器构成的保护回路进行改造。系统结构合理、可靠性高、易扩展,能完全满足火电厂热工保护的需要。
b 能对所有输入/输出点进行状态记录,包括各输入点的接通和断开时间,而且热工维护人员可根据所提供的动作记录来判断一次元件或现场接线可能存在的问题,消除事故隐患。
c 系统可实现保护联锁试验、动作记录数据管理、状态监视、系统组态等功能,大大提高了热工保护装置的技术水平,减轻了热工人员的维护量,为事故分析提供了可靠、客观的依据。
d 该系统灵活性高、适应性强、扩展性好,可根据用户需要进行扩展和修改,并提供了与其它控制系统的接口。
热工保护系统肩负着保护主、辅设备,保证机组安全运行和防止事故扩大的重任,它是机组自动化控制的重要组成部分。随着机组容量的增大,热工保护的重要性已日益为人们所认识。因此,合理地设计热工保护系统,对提高机组自动控制水平,减轻运行人员的负担,增加机组运行的可靠性具有重大意义。目前,由于水环境的越来越恶劣,在人们增强环保意识,尽量减轻污染物排放的同时,水处理技术及效率就愈加重要。膜法工艺被认为是当前先进、的水处理工艺。下面结合日处理360吨,采用MF+NF工艺的移动集装箱水车的PLC控制应用。
一、 膜法水处理工艺简介
膜过滤是指液体在透过膜状物时,其中的部分物质被截留的现象。水处理行业通常所指的膜是指过滤孔径0.0001微米到10微米的固体膜。
从制造材料上,膜可分为有机膜和无机膜;从几何形状上,可分为平板膜、卷式膜、管式膜、中空纤维膜;从构成结构上,可分为单皮层膜和复合膜;从过滤流向上,可分为均向(对称)膜和非均向(非对称)膜。
由若干单位的膜组成的一个过滤单元,被成为膜组件。
由于切割分子量的区别,膜被分成反渗透(RO)、纳滤(NF)、超滤(UF)、微滤(MF)。其大约如下图所示:
一直以来,混凝沉淀过滤法和混凝过滤法作为前处理,被广泛用于自来水、工业用纯化水、半导体电力的超纯水、医药食品用的精制水、海水淡化等领域。上述处理方法是经过多年技术累积确立起来的,可以去除河水、井水、湖泊沼泽水和海水等原水中的悬浮物质。但是同时也逐渐产生了很多问题,例如:雨天水质的变动增加了絮状凝剂添加的复杂化;处理水中因使用絮状凝剂增加了铝、铁离子和污泥的产生量;絮状沉淀槽,沉淀池、沙过滤设备等设备占地面积大等等。
针对上述问题,膜法水处理工艺应运而生。大型MF膜组件不仅可以代替混凝沉淀过滤法和混凝过滤法,而且还可以通过过滤(除菌、清澈)工业用水,使取代一直以来使用纯化水作为工序用水的作法成为可能,工序水的成本也由此有望得到降低。
与传统水处理工艺相比,膜法工艺具有以下优势:
1)、可以得到高品质的产水
不管进水水质如何变动都可过滤出浊度小于0.01NTU的高品质水。
2)、可自动运行、运行简单
3)、不用絮凝剂、即使使用也只需要少量絮凝剂
4)、装置面积小
5)、建设工期短
6)、使用寿命长
在通常使用中,无需考虑化学药品腐蚀或生物分解等产生的膜破裂。
图一、膜过滤法与传统砂滤方法比较
二、膜处理系统流程
膜处理系统流程分为过滤、反洗及空气擦洗及冲洗三个过程。
图二显示了膜处理系统的过滤工艺流程。本系统为外压式循环过滤系统,原水无需混凝前处理(但是,要去除单独使用膜处理无法去除的成分例如色度等,需要依靠添加混凝剂达到目标去除率的情况,也可以添加混凝剂。),可以通过预过滤去除原水中所含的大块垃圾(特别是容易纠缠住中空纤维难以排出的纤维状垃圾)供给膜组件。
图二、过滤工艺流程
为了运行的长期性和安定性,加入次氯酸钠(NaClO)溶液进行反洗和同时进行空气擦洗的设备也需要同时备好。见图三。
图三、反洗及空气擦洗工艺流程
图四显示了膜处理系统的冲洗工艺流程。
图四、冲洗工艺流程
三、PLC控制系统
应外方要求,PLC采用MITSUBISHI FX2N M80R CPU,及4个4AD和1个4DA扩展模块。触摸屏采用PRO-FACE GP2500T 10.4寸彩屏(带TCP/IP接口)。变频器采用ABB ACS350系列。采用SCHNEIDER低压电器。实际使用过程中觉得用SIEMENS S7-200 PLC加TP270触摸屏更有技术及功能优势。
PLC的控制功能
1)、采用步进程序编写过滤、反洗及空气擦洗及冲洗流程的逻辑顺序控制
2)、PID功能。利用FX2N内置PID功能块通过4DA控制变频器的输入给定,调节过滤泵的频率,从而达到恒流量控制。
3)、各设备的运行、故障状态信号及温度、压力、流量和液位信号的采集及各种泵、空压机和气动阀的控制。
触摸屏的控制功能
1)、通过触摸屏实现手/自动控制
2)、工艺流程显示
3)、手动操作
4)、工艺参数显示和设置
5)、PID参数设置
6)、膜泄露检查操作
7)、手动CIP清洗操作
8)、报警显示、存储及查询、打印功能
9)、模拟量趋势显示,查询、打印功能
10)、数据记录,显示,查询、打印功能
11)、可选的通过TCP/IP远程监控
图五、工艺流程主画面
图六、工艺参数设置画面
图七、趋势曲线画面
图八、膜处理系统