西门子6ES7253-1AA22-0XA0多仓发货
1 引言
随着国内外基建行业技术水平的迅猛发展,市场对金刚石粉末锯片、砂轮、磨料等人造金刚石制品的需求量越来越大。随之而来的是生产人造金刚石的设备走俏市场,其中,六面顶金刚石压机以其操作简便、生产成本相对较低等优点占据了的较大份额。
人造金刚石是利用石墨可在高温、高压的环境中,在触媒的催化作用下,其原子结构发生改变,合成人造金刚石这一机理来实现的。六面顶金刚石压机可以利用机械、液压装置从六个方向向主机中心加压,在主机中心硬质合金顶锤的作用下使生产原料形成一个密封的正方体超高压容腔,同时通过的电加热装置对该腔体加热,该腔体就可以产生合成人造金刚石所需的高温、高压条件。整个设备的工作过程需要由电控系统与机械、液压系统相配合完成一系列工作。其中,电控系统主要通过对由大、小柱塞泵和二十余个电磁阀组成的液压系统以及电加热装置等的控制来完成自动、分段、调整等不同模式下的工作。整个设备可以说是一种典型的机、电、液一体化集成产品。
2 压机电控系统的硬件设计
传统的金刚石压机电控系统由近三十个中间继电器、时间继电器、接触器等不同型号规格的低压电器组成逻辑控制线路,不仅故障率高且维修不便。当生产工艺进行调整,需要改变控制逻辑时必须改变硬件接线,变动起来十分麻烦。目前,整个压机的机械、液压系统从原材料到零部件都已经有了很大的改进,相比之下落后的电控系统已成为阻碍生产发展的“瓶颈”问题。
七十年代初,美国汽车工业为了适应生产的进一步发展,首先将可编程序控制器应用于生产线的自动控制中并获得了成功。到八十年代,微处理器被应用到PLC中,使其功能变的更完善、更优越,且做到了小型化甚至超小型化。现在,PLC己被广泛应用于各个行业。综合各项指标,系统选用了日立公司E系列的E-64HR型PLC作为主控单元设计了压机新的电控模式。E-64HR共有64个I/O口,其中40个开关量输入口,24个输出口,内置式电擦除EEPROM可以保证用户方便的完成程序和参数的修改和储存。PLC根据各输入口所接按钮、行程开关、电接点压力表、接触器等电器的信号的状态以及用户编制的软件程序自动控制各泵、电磁阀以及加热装置的动作完成整个生产过程。
E-64HR各输入口的内部线路图如图l所示,采用光电耦合方式有效的防止了外部干扰的窜入。输入电压DC21.6~26.4V、输入电流l0mA,在七年来数百台压机的跟踪服务统计中,没有发现由于输入单元自身故障出现误报,其线路工作还是可靠的。其输出口内部线路图如图2所示,选用继电器接点输出方式时继电器线圈电压DC21V~27V、耗电10mA、触点容量2A、平均寿命20万次以上,可直接驱动接触器线圈、电磁阀线圈及指示灯等低功耗元件。
为了输出继电器的可靠工作,设计中在所有线圈负载上均并联了阻容吸收装置。在对用户送回来的故障PLC的检修中,我们发现70%以上的故障仍出现在输出单元,一类是机内压敏电阻烧穿,另一类是输出继电器触点烧毁。经现场考察及分析发现,部分乡镇企业电源质量较差,原设计中输出口所需AC220V直接采用电网任意一相供电,电源波动大,直接导致了上述硬件故障。后改为采用加热装置中的交流稳压电源兼向输出口驱动电源供电,有效的减少了该类故障的发生。
总结不同地区、类型用户的使用情况,一些经验和教训是共性的PLC优越的性能、良好的抗干扰性已被大家所认同,发挥这一优势的前提条件是对其供电电源和屏蔽接地点的合理设计。PLC采用AC220V直接供电,其内部电源部分的稳、压、整流、滤波电路设置是比较完善的。但设计中仍需采用隔离变压器对其供电电源进行隔离,以保证工况恶劣的场合下干扰不由电源窜入,提高系统可靠性,一般可采用BKC-220/220V(60-100VA)的隔离变压器。其次,应引起注意的是所有厂家的PLC均有一个专用接地端子(GND),该端子是整机的屏蔽接地点,用户好为其单独设立接地极(接地电阻<100Ω,接地线长度<20m),并注意合理选择接地极的位置。有些用户将其接在电器设备的外壳上甚至接在零线上,这是十分错误的,不仅起不到屏蔽作用反而成为事故引入点。河北新河某厂错误的将该接地端子接于避雷系统接地极上,雷雨时造成高压引入,造成整个车间数台PLC完全被烧毁。以上问题,尽管用户手册己强调,但仍有许多用户未引起注意,造成不必要的损失。
目前流行的六面顶压机均有大(11 K W)、小(1.5KW)两个柱塞泵,小泵主要是为了完成“保压”阶段的压力维持,避免大泵冲击过大,造成压力波动过大,影响金刚石的生长质量。经实验将大泵由变频器实现变频调速,取消小泵,从系统的“保压”效果、金刚石的生长情况以及整个设备的电能消耗等几个方面来看,结果都是令人满意的。虽由市场原因,该方案没能得以推广,但是将PLC、变频器、压力传感器、温度传感器以及超低频电源技术结合起来,对电控系统进行较大的改进是下一步技术发展的必然。
2、PLC的软件设计
整个程序需按照液压动作图和工艺要求完成以下动作:启动工作按钮后,三个活塞缸在油压驱动下前进,至预定位置后由限位开关给出信号,三个缸依次停止;暂停一定时间后六缸同时加压,形成叶腊石密封仓;稍后,由增压器加压,到达一定压力时开始对密封仓通电加热并开始加热计时,同时继续升压至保压压力,开始保压并保压计时:其间如有压力泄露由小泵自动补压。加热和保压时间到后,系统泄压,六缸回位完成一个工作循环。
在编制程序的过程中,较多的使用了E系列的“FUN03”指令,如所示梯形图,其中6、215、T00等为外部输入信号、PLC内软中间继电器及PLC内时间继电器的代号,将它们按所需的与、或关系接在“FUN03”的置位端(S端),当S端输入信号为l时,如5+6·11=l时相应输出中间继电器200置1,此后即使S端为0,200仍为1,只有当215·23·l8=l时,即“FUN03”的R端置1时200才置零,故该项功能可以用R-S触发器来表述。
编程时把下一个动作的内部输出点(如201)接在上一个内部输出点(如200)的复位端(R),这样在每接入一个新动作的同时把上一个输出封锁。再由200、201等上述的“FUN03”的输出单元进行逻辑组合去控制50、51等PLC输出继电器,进而完成对电磁阀、交流接触器等外围低压电器的控制。这样的设计不仅防止了在不同阶段输出继电器的误动作、相互干扰以及出现PLC软件编制中常犯的“双线圈”错误。并且,在由于需要修改工艺而必须调整动作顺序时,只需调整相应“FUN03”的控制方式即可,给修改工艺带来了极大的方便。尽管有些型号的PLC不具有类似的“FUN03”功能,我们也可以的依据上述思路进行开发,对此将由另文进行详细介绍。依据我们多年来在不同工况下对不同厂家、型号的PLC使用经验看,这一思路是比较成功的。而且,我们将这一方法介绍给一些现场的技术人员,也得到了他们的认可和肯定。
3 结束语:
PLC替代原有继电器控制模式后显示出了巨大的优势,被生产厂家和用户所接受。93~96年间该压机成为石家庄煤矿机械厂的主导产品之一,为该厂创造了巨大的经济效益。由压机用户进行的统计表明:使用继电器进行控制的压机,由于电气故障造成的停产周平均4小时,由此造成每台压机年均经济损失八千元左右。采用PLC控制的压机,其工作性能稳定且各I/O指示简单、明了,大大缩短了维修时间,电气故障造成的停产降至周平均20分钟,特别是修改工艺时仅需进行程序的调整,省时、方便为用户创造了可观的经济效益。许多老式压机的用户要求帮助他们用PLC改造老压机,体现了在金刚石压机上使用PLC的成功。
引言
可编程控制器由于抗干扰能力强,可靠性高,编程简单,性能价格比高,在工业控制领域得到越来越广泛应用。工业控制机作为中央控制单元,配有组态软件,选用大屏幕实时监视界面,实现各控制点的动态显示、shujuxiugai、故障诊断、自动报警,还可显示查询历史事件记录,系统各主要部件累计运行时间,各装置工艺流程图,各装置结构图等。中央控制单元和下位机PLC之间采用串行通讯方式进行数据交换,通常距离在1000m以内选用485双绞线通讯方式,较常距离可选用光纤通讯,更长距离也可选用无线通讯方式。下位机选用PLC控制,根据控制对象的多少,控制对象的范围,可选用一台或多台PLC进行控制,PLC之间数据交换是利用内部链接寄存器,实现数据交换和共享。
2 控制系统可靠性降低的主要原因
虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。
2.1 影响现场输入给PLC信号出错的主要原因有:
2.1.1 造成传输信号线短路或断路(由于机械拉扯,线路自身老化,特别是鼠害),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错。
2.1.2 机械触点 抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制结果。
2.1.3 现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。
2.2 影响执行机构出错的主要原因有:
2.2.1 控制负载的接触不能可靠动作,虽然PLC发出了动作指令,但执行机构并没按要求动作。
2.2.2控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作。
2.2.3各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统可靠性。
3. 解决方案的实施:要提高整个控制系统的可靠性,必须提高输入信号的可靠性和执行机构动作的准确性, PLC才能及时发现问题,用声光等报警办法提示给操作人员,尽快排除故障,让系统安全、可靠、正确地工作。
3.1 设计完善的故障报警系统
在自动控制系统的设计中我们设计了3级故障显示报警系统,第1级设置在控制现场各控制柜面板,用指示灯指示设备正常运行和故障情况,当设备正常运行时对应指示灯亮,当该设备运行有故障时指示灯以1Hz的频率闪烁。专门设置故障复位灯按钮,显示设备工作状态。第2级故障显示设置在中心控制室大屏幕监视器上,当设备出现故障时,有文字显示故障类型,工艺流程图上对应的设备闪烁,历史事件表中将记录该故障。3级故障显示设置在中心控制室信号箱内,当设备出现故障时,信号箱将用声、光报警方式提示工作人员,及时处理故障。在处理故障时,又将故障进行分类,有些故障是要求系统停止运行的,但有些故障对系统工作影响不大,系统可带故障运行,故障可在运行中排除,这样就大大减少整个系统停止运行时间,提高系统可靠性运行水平。
3 . 2 输入信号可靠性研究
要提高现场输入给 PLC 信号的可靠性,首先要选择可靠性较高的变送器和各种开关,防止各种原因引起传送信号线短路、断路或接触不良。其次在程序设计时增加数字滤波程序,增加输入信号的可信性。数字信号滤波可采用图 1 程序设计方法,在现场输入触点后加一定时器,定时时间根据触点抖动情况和系统要的响应速度确定,一般在几十 ms ,这样可保证触点确实稳定闭合后,才有其它响应。模拟信号滤波可采用图 2 程序设计方法,对现场
图2
模拟信号连续采样2次,采样间隔由A/D转换速度和该模拟信号变化速率决定。2次采样数据分别存放在数据寄存器DT0、DT1中,当后1次采样结束后利用数据比较、数据交换指令保留值作为本次采样结果控制R100的通断。
图 3
高值监视模块的使用(原理如图3所示)
模块的运算式为当DT 1 >=DT 2 时R100=ON 当 DT1<(DT 2 --WR10)时 R100=OFF
低值监视模块的使用(与图3相反)
模块的运算式为当DT 1 < DT 2 时R100=ON 当DT1 >= (DT 2 --+WR10)时 R100=OFF
说明DT 1 为触点输入数,DT 2 -为经验值WR10为滞后宽度.
提高读入PLC现场信号的可靠性还可利用控制系统自身特点,利用信号之间关系来判断信号的可信程度。在一定时间里输入变化范围,但输出在允许值内变化自动延长通断时间,消除了小信号影响、极限开关故障或传送信号线路故障,同样通过报警系统通知操作人员处理该故障。由于在程序设计时采用了上述方法,大大提高了输入信号的可靠。
3.3 执行机构可靠性研究
当现场的信号准确地输入给PLC后,PLC执行程序,将结果通过执行机构对现场装置进行调节、控制。怎样保证执行机构按控制要求工作,当执行机构没有按要求工作,怎样发现故障?
我们采取以下措施:当负载由接触器控制时,启动或停止这类负载转为对接触器线圈控制,启动时接触器是否可靠吸合,停止时接触器是否可靠释放,这是我们关心的。我们设计了如图4所示程序来判断接触器是否可靠动作。X0为接触器动作条件,Y0为控制线圈输出,
图4
X1为引回到PLC输入端的接触器辅助常开触点,定时器定时时间大于接触器动作时间。R0为设定的故障位,R0为ON表示有故障,做报警处理;R0为OFF表示无故障。故障具有记忆功能,由故障复位按钮清除。
图5
当开启或关闭电动阀门时,根据阀门开启、关闭时间不同,设置延时时间,经过延时检测开到位或关到位信号,如果这些信号不能按时准确返回给PLC,说明阀可能有故障,做阀故障报警处理。程序设计如图5所示。X2为阀门开启条件,Y1为控制阀动作输出,定时器定时时间大于阀开启到位时间,X3为阀到位返回信号,R1为阀故障位。
六、结论
自动控制系统设计中采用了以上方法,经过近2年的运行证明这些方法的采用对提高系统可靠性运行是行之有效的。
1 客车整车喷烤漆房系统简介
客车整车喷烤漆房设备由实体,送排风系统,控制系统,净化系统,照明系统,安全消防系统,电动升降平台,进出车辆大门,加热系统等组成。实体采用钢结构框架承插上海宝钢EPS彩钢板制作,彩钢板厚度δ=0.75mm,墙板厚度不小于75mm,具有保温性能好,整体密封性能好,承载能力大的特点。
进气净化采用不少于两级的织物过滤,过滤精度大于10μm,室内设压力传感器1个,采用美国进口产品,电路芯片采用菲利浦产品。燃油采用集中供油方式。燃烧器性能稳定,工作安全可靠。电路连接件安全,牢固,可靠。在较冷季节进行喷漆作业时,室温应大于18℃。换热器采用不锈钢制作,具有耐热性和良好的散热效能(大于75%)送,排风风机应加热系统连锁,当送,排风系统位启动时,加热装置启动开关无效;当风机发生故障时,系统应能自动关闭加热装置。
(1) 喷漆的工作原理
外部空气经初级过滤后由风机送至室顶,在经过顶部过滤网二次过滤净化后,进入房内,房内空气采用全降式,以大于0.35m/s的速度向下流动,使喷漆后的漆雾微粒不能在空气中停留,而直接进入底层出口过滤装置,从而滤去喷漆过程中产生的有害气体,经处理达标后的废气直接从排气口排除至室外。保证室内空气清新,从而达到安全卫生的工作环境。(较冷季节可以对送入的空气进行加热,使送入的空气在30min内温度升至18℃)
(2) 烤漆的工作原理
通过风机将冷空气经初级过滤网过滤后,与热能转换器产生的热量送入烤漆房顶部,在经过滤网二次过滤净化,热空气以大于0.15m/s的速度进入烤漆房内,从底部排出,经过风门的内循环作用,除吸进少量新鲜空气外,部分热空气又被继续加热利用,送入烤房内部,使烤房内温度逐渐升高,当温度打到设定温度时,燃烧器自动停机,当温度下降到设定的温度以下4-5℃度时,风机和燃烧自动机,使烤房内温度保持相对稳定。当烤漆时间达到设定值时,烤房自动关机,烤漆过程结束
2 烤漆房的控制系统控制要求
(1) 二条烤漆房配置二套控制柜和一个工控机监控系统。该套系统必须封闭在操作室内。
(2) 每条生产线电控系统均采用PLC做控制中心,全线实行联锁控制,即:循环,排风系统不能正常工作时,自动关闭加热系统,以及工作状态选择等功能。常规操作和选择在控制柜和现场操作台完成。
(3) 控制系统具备延时功能,即:先行启动循环,排风系统后,延时启动加热系统,关闭时相反。
(4) 各主控制回路均设有过载,短路,失压等保护系统,确保系统安全运行。并具有安全保护功能,当燃油加热系统出现故障时,自动关闭加热系统及全线设备。
(5) 室内温度采用数字显示,6套热电偶控制温度,通过数显控制仪表调节燃烧工作状态,达到自动控温。
(6) PLC及工控机主要功能。设备各单元的启动,停止,运行,故障及工作选择状态,均由PLC采集,按照工艺通过输出单元控制并作声光报警。工控机通过PLC接口进行数据传送完成工艺流程动态显示各设备的运行或故障监控,PLC程序编制,参数设备及报表打印功能。脱开工控机系统,电气控制同样通过PLC完成各种流程的控制,并在柜体面板上采用组合信号灯观察各设备的工作状态。
(7) 电器控制柜采用组合式及密封型结构,柜内设立排风及照明装置。
(8) 现场导线的敷设采用桥梁,电线管和绕管联合布置,防暴场所均选用防暴电路,动力导线选用VV系统四芯电缆,控制线选用KVVR及KVVRP屏蔽电缆。动力线路和控制线路敷设时用隔板分开。
(9) 照明系统
室内照明灯箱采用嵌入式,选用荧光灯,其安装方式采用隔爆处理。
(10) 安全,消防系统
按照GB14444-93要求,设置相应数量的安全门。
(11) 电动升降操作台
在喷漆室内轨道两侧设置升降工作台,通过平台立柱上的防爆按钮控制操作台的升降。
3 烤漆房的控制系统总体结构及通讯参数配置
3.1 总体结构
电气系统设计主要是根招工艺及设备的要求,分析目前国内外涂装线电控系统现状,结合当今工业控制系统发展趋势,本着高质快速、柔性化和低成本的要求,采用以计算机为主的集散型控制系统(DCS)电气控制方案。利用计算机对生产过程进行集中监控、操作、管理和分散控制,有效地克服了以前油漆涂装线电控系统由于采用大量分散的仪表控制的缺陷。上位机工控机采用 1台 研华工控机IPC-610 PⅢ 1G 256M 40G硬盘,组态软件采用KINGVIEW6.02 ,PLC采用2台三菱FX2N-128+16EX,温控仪采用富士PXW9,实现对燃烧器大小火及上限停火。如图1所示。系统具有很高的可靠性和冗余性。脱开工控机系统,电气控制同样通过PLC完成各种流程的控制。
3.2 系统连接与FX2_485协议通讯参数配置
本协议支持与三菱FX2_485及其兼容的FX系列PLC之间以485方式进行通讯,可以采用串行通讯,使用计算机中的串行口。支持上位机通过组态软件与三菱的通讯模块232ADP,485BD,485ADP之间的通讯。PLC通讯参数可以通过编程器设置,将D8120设置为:E080,
具体表示的通讯参数如下:
*协议: bbbb 数据: 7 校验:无 停止:1 传输速率:9600
*硬件:RS-485 数目检查:YES 控制程序:bbbbat4
在D8121中设置地址,在组态王中定义的设备地址必须和此设置保值一致。
注意:从PLC资料中得知,设置后必须关PLC电源,再重新给PLC上电,设置才能生效。
4 程序没计
4.1 两种运行方式
为了保证设备的运行可靠性及现场的控制和操作的方便性,每套分系统采用2种方式运行:
(1) 自动运行方式
只要接通电源,选择自动方式,系统就会先检测设备的预备运行的各项条件,如满足条件,按下运行按钮,设备就可自动运行。
(2) 手动运行方式
接通电源,选择手动方式,系统就会先检测设备的预备运行的各项条件,如满足条件,操作人员可以有选择地操作设备,这仅用于设备的检查和应急生产使用。部分(喷装室)加设各个联动系统的检测信号,作为联动必须满足的条件。
对于设备的报警情况,分设一级和二级的故障报警,并有不同的处理方法:一级故障:是一些比较简单的故障,它不会对设备造成损害和人身安全的影响。空气过滤器压差大等,程序只对设备做声音报警和故障位置的指示。二级故障:是能引起设备的损害和人身安全的故障,它会造成生产不能正常进行。如大型风机的故障、断路器跳闸、火灾和地震等故障,程序对设备作出立即停机和声音报警及位置指示。
4.2 PLC程序总体设计
(1) 整个程序的自动喷漆和手动喷漆部分,自动烤漆和手动烤漆部分,通过CJ指令来分段,如图2所示,大大减轻了编程的难度,使得喷漆,烤漆,自动,手动可分别编程,可以采用双线圈输出,解决了程序包容性问题,注意公共部分程序和分段程序的包容性,防止双线圈输出,否则出现不可预测的结果,通过CJ 指令可实现任意分段,比采用MC,MCR实现自动和手动更具灵活性,并可以采用双线圈输出。
(2) 手动程序及复位
为使系统调试方便,设有手动程序。手动方式是通过往制箱上的手动功能开关来进行的。每接通一个开关,执行一个相应的动作。当系统没有处于自动运行和手动运行状态时,按“总复位”按钮。可使系统完全复位。
4.3 上位机监控程序
在上位机上实现工艺流程图的实时监测、数据处理是通过可编程控制器操作站系统软件和组态软件来实现的。组态软件主要对系统的构成进行定义,定义过程点参数、趋势笔、趋势组、流程图、报表等,监控软件由各种监视画面和操作画面组成,主要包括总貌画面、流程图画面、趋势画圃、报表管理以及趋势打印、报表生成打印输出、操作调整等。
上位机主要工艺参数分组曲线显示,并存人上位磁盘中,工艺人员随时调用打印,做工艺质量分析。同时还可将每班设备启停时间、各工位启停传送时间进行记录存盘.供生产管理人员随时查询打印停工台时间和停工月报表。 上位机的操作分操作员级和工程师两级.正常生产时,由生产工人操作。
工艺流程画面如图3实现了对整个烤漆房的全面监控,界面形象生动,友好,具有较好的可靠性,在画面上 实现凤机旋转动画,燃烧机燃烧动画,当某设备发生故障,该设备将闪烁,并弹出实时报警画面;在手动状态,可以直接点击该设备,便可启停该设备,喷漆和烤漆时,通风的路径及颜色将发生变化。烤漆房温度除数字显示外,采用温度棒图显示。
图4系统参数,显示系统各设备的状态,可设定参数,如烤漆时间;图5历史报警画,显示所有报警发生的时间,报警恢复、报警应答,报警的优先级,报警组,如果在运行阶段,变量的数值或变化情况满足已定义的报警条件、从报警条件恢复正常状态、报警应答时均可以产生报警事件(报警发生、报警恢复、报警应答)。报警信息还可以用文件的形式进行历史记录或实时打印报警信息。用户可以自定义报警信息的显示格式、记录格式和打印格式。同时可以利用命令语言实现对报警事件的复杂控制和灵活处理。
5 结束语
本系统已在青岛四方车辆厂调试成功,且投入生产,从运行情况来看,电气系统几乎处于无故障工作,大大提高了生产率。此系统组态灵活,操作方便,具有抗干扰能力强,工作安全可靠,维修方便,与上位工控机联系,接受工控机的控制和查询,由工控机完成对整条生产线的监控,实现了喷烤漆自动化。