浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7222-1HF22-0XA8诚信交易

西门子6ES7222-1HF22-0XA8诚信交易

在一些电子部件产品测试时,早先很多生产厂家都使用继电接触控制系统。该系统由分立元件组成,由于线路简单,元件控制精度不高,加上抗干扰能力级差,所以运行不够稳定,误动作频繁,使产品的测试和分析不准确。随着现代工艺的高精度要求,为了适应市场需求,采用可编程控制器对原继电电气控制系统进行改造,但由于各PLC厂家硬件模块和软件结构绝大多数都是专用的、互不兼容的,系统各模块间的交互方式、通信机制也各不相同,这使得控制系统相对独立、彼此封闭。随着技术的进步和市场竞争的加剧,这种专用体系结构的控制系统越来越暴露了其固有的缺陷。由于基于PC平台的软件PLC无需专门的编程器,可充分利用PC机的软硬件资源,直接采用梯形图或语言编程,具有良好的人机界面等优点,因此逐渐取代了硬件PLC,成为研究的热点。

1、电气测试系统原理介绍

该寿命测试系统能够利用定时器控制电子部件产品的动作频率,利用计时器来控制动作的次数,基本原理如图1所示。

newmaker.com
图1 电气测试基本原理

PLC使用OMRON CQM1H-CPU11 PLC加上扩展模块,其I/O点数可达26个,可满足多路测试,利用控制动作Relay的定时器和负载反馈Relay的定时器时间差进行判断产品或负载的不良状态,并对系统进行停机保护,实验完成后利用产品或负载在机械和电气方面的特性对其产品进行评价。

其中,遮断保护、动作Relay和负载反馈Relay都是用PLC内部高精度定时器进行控制的,其原理都是用低电压控制高电压,实现高低压分离,保証了测试系统的安全性,这里的遮断保护用的是Fuji Electric Co.Ltd。JapanSC-13AA型接触器,耐压可达600V,单触点额定电流是32A,动作Relay和负载反馈Relay(也可以用光电耦合或电流互感器)都是用的OMRON的MY系列继电器。

实际用DL750 scoper测量发现这两种精度都不是很高,误差往往有8-10ms。

实际中对产品评价需要很多数据,需要测试很多产品,这样需要多独立回路,接线走线困难,而且会产生寄生电路,所以,从PLC产品的兼容性及测试成本考虑,采用目前先进的嵌入式软PLC技术,可大大缩短实验周期并降低成本。

2、软PLC技术

传统的PLC经过十几年的发展,技术已经非常成熟,以高速度、高稳定性、高性能在工业控制领域得到了广泛应用,与此同时,随着现代计算机技术和电子技术的发展,在工程方面逐渐表现出其缺点:传统的PLC厂商垄断市场,其产品户不兼容,缺少明确一致的标准,难以构建开放的硬件体系结构;各厂商产品的编程方法差别很大,技术专有性较强,工作人员培训时间长,造成PLC的性价比增长很缓慢。

20世纪90年代中期,计算机和微电子技术的迅猛发展以及PLC的IEC61131的制定,产生了软PLC技术,所有"软PLC技术",就是用PC作为硬件支撑平台,利用软件实现标准硬件PLC的基本功能,也就是将PLC的控制功能封装在软件内,运行于PC的环境中,以PC为基础的控制系统,同时提供了PLC的相同功能,却具备了PC的各种优点。

软PLC技术一般由开发系统和运行系统两个部分组成。开发系统运行在PC平台上,而运行系统则运行在嵌入式硬件平台上,一般而言,嵌入式硬件平台上都要运行某种嵌入式操作系统,比如μC/OS-II、μClinux等。

现代开发系统的特点一般都是集成化开发环境,界面友好,易于使用。软PLC嵌入式系统是基于IEC61131的,所以必然要支持其中的几种语言,系统运行在嵌入式硬件平台上,负责解释执行由开发系统编译、链接后产生的目标文件,运行系统一般由运行内核、通信接口和系统管理三大部分组成,其设计和实现精度很高,它的执行效率将直接影响到系统在现场控制中的反应速度。

3、嵌入式平台的虚拟运行系统

运行系统的结构组成如图2所示。系统管理器的主要任务是处理不同任务、协调程序执行及从I/O映象读写变量。I/O接口可与本地I/O系统和远程I/O系统通信。通信接口使运行系统可以与开发系统或其他设备进行通信。内核解释器是运行系统的核心部分,负责解释执行由开发系统编译完成的PLC应用程序的目标代码。

newmaker.com
图2 运行系统的结构组成

运行系统可在多种支持平台上运行,它通过将数据区和代码区分离,实现程序的动态更新和代码的高效率动态下载。

(1)在μClinux平台上实现软PLC虚拟机实现步骤

将梯形图的指令翻译成宏汇编并建立一个宏库;
把用户编写的梯形图程序编译成中间代码形式的PLM文件;
将PLM文件转变为汇编程序;
用汇编器汇编变成功的汇编程序,将解释执行内部指令(PLM文件)转换为程序,汇编成机器码执行,实现PLC指令机器码执行方案,大大地提高了执行速度,同时大大节约了内存空间;
将PLC指令对应的机器码移植到嵌入式操作系统中执行。
(2)运行系统的两大模块

运行系统主要由两大模块组成:1)梯形图到机器码程序的转换;2)执行机器码文件。每个模块的功能如下:

1)梯形图到机器码程序的转换。首先把用户编写的梯形图程序编译成中间代码形式的PLM文件,然后将PLM文件转变为汇编程序,后用汇编器汇编转变成功的汇编程序,产生机器码从而生成可执行的PLE文件。

2)执行机器码文件。将PLE文件嵌入配置好的执行环境中并执行,通过工控机的面版指示灯监测程序的正确性。

(3)虚拟机总体设计

根据虚拟机的原理和执行机制,对虚拟机的机器码执行方案进行了总体设计,如图3所示。PLC文件是梯形图程序的保存文件,通过对PLC文件进行词法分析、语法分析和语义分析编译产生PLM文件,然后调用宏汇编库,并进行一系列的转换生成机器码,产生PLE文件;后创建机器运行环境来执行机器码,宏汇编库中是每个梯形图指令对应的宏汇编段。

newmaker.com
图3 虚拟运行总体设计框图

(4)交叉开发调试算法研究

非嵌入式通常采用本机开发、本机调试、本机运行的开发方式;而嵌入式开发需要交叉开发,绝大多数采用宿主机开发、宿主机和目标机之间交叉调试、目标机运行的方式开发。

交叉开发调试算法:

在宿主机平台上编写程序代码;
固化监控器至目标机上;
连接宿主机和目标机;
编译链接应用程序,生成可执行代码;
将可执行代码下载到目标机;
使用交叉调试器进行调试;
如果程序调试没有发现异常,转至11);
调试程序时发生错误,利用交叉调试器定位错误;
修改错误代码;
重复4)-10);
将目标机程序固化在目标机上。

4、嵌入式软PLC改造后的控制系统

以测试继电器TV5实验为例。其要求如下:每次测试5个继电器,每个继电器的动作频率是5s开,5s关。根据要求,试验好的结果是每个继电器用6个TV负载,即每个TV负载是5s开,55s管。输入点有:开关,检出,复位M个,停止次数设定量N次,动作频率设定L个,常开/触点转换。其中,M=测试产品个数,N、L个数由实际需要确定。其算法如下:

设定一个循环周期,使累积误差小;
在循环周期内设计动作时间和动作频率,以及动作次数;
设计相关联动、互锁、紧急停车和复位等功能;
执行动作与反馈根据产品相关标准进行比较,判定结果和设定中断程序。

采用模块化程序设计编程,各模块均由主程序调用,且为了程序不出误动作,还要考虑电流谐波和冲击对高电源的要求。用了算法优化设计,5个继电器每隔2s一个动作,5个刚好10s。其中一个动作频率程序如下:

newmaker.com

与之对应的动作如下:

newmaker.com

该程序检出判断程序如下:

newmaker.com

newmaker.com
图4 TV负荷电压电流波形

由图4可知:启动时突入电流大值约为55A,突入时间约为54ms,定常为8A。

newmaker.com
图5 电机电压和电流波形

由图5可知:电流滞后电压约为0.9ms,其功率因素为0.96。

实验结果与测试要求基本一致。如果不采用优化算法程序设计,则对电源要求很高,所以该控制系统可以应用实现,无形中降低了成本。

5、改进后优点和维护

很明显,经过以上改进后有以下优势:

使用PLC后通用性大大提高,改进了以前单一PLC,并缩短了工作人员的培训周期;
用嵌入式软PLC代替传统的硬PLC,外部线路简化;
模块化可实现各种复杂的控制系统,方便地增加和改变控制功能;
PLC可进行故障自动检测和报警显示,提高运行安全性,且便于检修;
便于qunkong制,提高运行效率;
更改控制方案时无需改动外部线路。
测试及维护需注意的事项:
为了提高系统效率并降低开销,尽量少用I/O;
要有紧急停车和适当联锁按钮环节;
输入和输出不能用同一电缆线;
直流电感性负载并联浪涌二极管,以延长触点的使用寿命;交流感性负载并联电容吸收器以降低噪声。
为保证控制系统工作的可靠性,做好接地、防尘、访油、防辐射工作。

结语

此系统可用于继电器、马达、电感、充电器等产品的测试。改进后仍存在以下几点缺陷:其一,如果负载断路,其本身并不能检测和保护;如果负载短路,产品在短时间内产生过电流,会造成产品破坏甚至威胁人身安全。其二,数据采集不全,不能实时监控。利用电流计可以弥补点的不足;采用数据采集卡可以实现实时数据采集。

1、引言

热风炉是给高炉提供热风的炼铁设备。在燃烧期,热风炉燃烧高炉煤气,产生的废气流经蓄热室,使蓄热室的格子砖蓄热。在送风期,冷风反向流经蓄热室被加热后送往高炉,为高炉提供连续的、适宜温度的热风,以提高冶炼强度,降低焦比,达到高炉节能降耗的目的。由于种种原因,相当多的热风炉控制落后,运行状况并不令人满意,有的甚至是手动控制。操作者通常依据个人经验手动调节煤气量和空气量以控制热风炉拱顶温度和废气温度,通入其中的空气和燃气很难恰到好处。由于控制不当,送风温度一直偏低,造成资源的严重浪费,影响高炉的冶炼。热风炉采用自动控制,可以降低操作人员的劳动强度,确保系统安全稳定运行,在一定的程度上起到了降低能耗,提高风温的作用。

2、热风炉的工艺概述

热风炉有燃烧、焖炉、送风三种状态,按燃烧、送风的周期循环工作。其过程为:热风阀、冷风阀关闭,烟道阀和助燃空气、煤气切断阀,调节阀打开时为燃烧状态。此时助燃空气和煤气按空燃比混合,在热风炉顶部燃烧,高温烟气从上向下经过球床体,将热量存储在热风炉内。当拱顶和烟道温度达到设定值,蓄热室储存足够热量,关闭煤气、助燃空气的调节阀、切断阀,关闭烟道阀,热风炉处于焖炉状态,等待送风。需要热风炉送风时,先打开冷风均压阀使冷风阀两端的差压减小,再打开冷风阀和热风阀,关闭冷风均压阀,热风炉处于送风状态。此时,冷风从下向上经过热风炉球床体,被加热成温度略低于拱顶的热风,将储存于热风炉内的热量送往高炉。随着送风时间的延长,风温逐渐下降,热风炉再转入燃烧状态,循环工作。

新1#高炉配备3座热风炉,设置有“两烧一送”、“一烧两送”(正常工作)、“一烧一送”(非正常)三种送风制度,由操作人员根据高炉送风需要选取。3座热风炉根据送风制度,遵循拱顶和烟道温度先达到设定值的热风炉先送风的优选原则,交替燃烧、送风,向高炉连续供风。除高炉休风外,系统中应至少有1座热风炉处于送风状态。

3、系统设计

3.1 系统结构设计

系统结构分工程师/操作员站、PLC控制站2级,网络分上层管理网、下层控制网2层,见图1。上层管理网连接PLC控制站和操作员/工程师站,符合TCP/IP协议,通信速率100Mb/s,介质为双绞线。PLC控制站通过140 NOE 771 01以太网适配器与路由器连接,操作员/工程师站为工控机,通过网卡与路由器连接。PLC控制站由四个机架组成,其中机架1为主站,其余3个机架为分站。主站和分站之间通过RIO处理器接口,RIO分支器以及F接头进行连接。采用该网络结构模式具有安装灵活、的特点。工程师/操作员站使用Schneider编程软件Concept和IFIX监控软件完成PLC的控制逻辑和人机界面的组态。热风炉控制系统配备2台操作员站,互为备用,接收PLC控制站的实时数据,显示热风炉生产过程的流程图、设备运行状况和过程参数值;提供过程量设定值和控制参数的设定、修改画面;显示实时/历史趋势并形成历史数据库;显示设备故障和控制系统自身故障的报警画面;实现报表的生成和打印。另外,系统配备了脱离自动控制系统的操作台,并将关键的工艺参数用二次仪表加以显示,以便在控制系统的非正常状态时进行手动操作,避免控制系统故障带来的损失。

newmaker.com
图1 系统结构图

3.2 系统控制功能设计

热风炉主要是为高炉提供稳定高温的热风,主要检测项目有拱顶温度、废气温度、换热器助燃风出/入口温度、换热器废气入/出口温度、煤气和助燃风压力、流量、冷却水压力、流量等。控测信号进入PLC后进行线性化计算,气体流量温度与压力补正,并在操作员/工程师站上显示所有数据。

(1)顺序控制。PLC控制站检测各热风炉的阀门位置和拱顶温度等参数,分析热风炉状态,根据送风制度和送风优选原则,向热风炉发出送风、焖炉、燃烧的指令,使阀门按规定的顺序和连锁要求动作,完成热风炉的状态转换和热风炉之间的送风切换,实现向高炉连续送风的目的。此外,实现系统的安全保护,保证热风炉安全生产。

(2)模拟量调节。模拟量的调节包括混风调节、煤气总管压力调节、助燃空气总管压力调节和燃烧控制。热风温度是热风炉的重要参数,直接影响高炉炉况。助燃空气和高炉煤气压力保持稳定是保证热风炉燃烧稳定的必要条件。这三个回路均采用单回路调节,由Concept软件的连续控制PID功能块实现,该功能块输出与连续信号对应的计算结果,转化为4-20mA的标准信号,作为调节阀的输入,控制过程参数,达到了满意的控制效果。由于热风炉是具有非线性、大滞后等特性的复杂被控对象,而其燃料(高炉煤气)受高炉炉况等因素的影响,热值和压力经常波动,为燃烧的完全自动控制带来了很大困难。经过长期的实践和摸索,将燃烧分为快速燃烧期、蓄热期和焖炉期三个阶段,采用固定煤气量调节空气量的方案烧炉。

3.3 项目效果分析

新1#高炉的热风炉自动燃烧的控制包括高炉煤气流量调节回路,助燃空气流量调节回路和拱顶温度调节回路。煤气量和空燃比由操作人员设定,煤气量的大小关系到拱顶的升温速度。在快速燃烧期,助燃空气量根据煤气量和空燃比自动配给,较小的助燃空气量促使拱顶温度尽快升高。拱顶温度达到设定值后进入蓄热期,由助燃空气调节回路和拱顶温度调节回路经过高选器控制助燃空气调节阀。拱顶温度超过设定值时,拱顶温度调节回路输出快速增大,当其超过助燃空气调节回路的输出时,由拱顶温度调节回路控制助燃空气调节阀;拱顶温度下降或略低于设定值时,拱顶温度调节回路的输出下降,当低于助燃空气控制回路的输出时,重新由助燃空气控制回路按空燃比控制助燃空气调节阀。为避免助燃空气调节回路进入积分饱和状态,在拱顶温度调节回路控制助燃空气调节阀时,需将助燃空气调节回路强制为手动状态。该控制方案达到较好的控制效果,并减少了煤气用量和电能消耗。

4、结束语

杭钢集团新1#高炉的热风炉自动控制系统降低了操作人员的劳动强度,提高系统运行的安全性和稳定性,在一定程度上提高了热利用率,减少了能耗。自2007年10月投产以来,为降低焦比、提高高炉利用系数起了积极的作用


展开全文
优质商家推荐 拨打电话