浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
6GK7243-1EX01-0XE0诚信交易

6GK7243-1EX01-0XE0诚信交易

1 引言

转炉上料系统负责给转炉的辅原料高位料仓、铁合金中位料仓、铁合金炉后料仓及LF炉精炼料仓提供各种合格的冶炼辅料,满足炼钢过程中造渣、脱氧、合金化及成分微调、炉外精练的需要。

2 上料系统工艺简介

上料系统包括辅原料和铁合金上料系统两套上料设备组成,系统设计的任务就是要求充分利用辅原料、铁合金两套上料系统设备,完成辅原料A1、A5流程及铁合金A2、A3、A4、A6、A7、A8流程的操作。在自动化功能上要实现各流程皮带机的手动、自动、非常手动和现场本地操作四种运行方式和卸料小车的自动准确定位、振料机的自动启动停止,为此需要在卸料小车、皮带机、振料机等流程设备存在的相互连锁关系基础上,以清料时间为基础实现单程的顺起、顺停及换料操作,为了避免不必要的皮带机停止操作,以提高上料系统运行效率,需要实现辅原料A1、A5流程之间及铁合金A2、A3、A4、A6、A7、A8流程之间的转流程操作。各流程主要设备逐项介绍如下。

2.1 辅原料上料系统

(1) A1:地下料仓振料机FVF01-FVF08;辅原料上料皮带机FBC01-FBC03;辅原料卸料小车FXC1;辅原料高位料仓FGC01-FGC10、FGC201- FGC210、FGC301- FGC310

(2) A5:石灰窑输送皮带机;辅原料上料皮带机FBC02-FBC03;辅原料高位料仓FGC01-FGC10、FGC201-FGC210、FGC301-FGC310

2.2 铁合金上料系统

(1) A2:铁合金地下料仓振料机TVF01-TVF14;铁合金上料皮带机TBC01-TBC03+TBC04正转、TBC04T推杆正限位+TBC05;铁合金中位卸料小车及推杆TXC1、1TXC1T1T、1TXC1T2T;铁合金中位料仓:TZC01- TZC06、TZC201-TZC208、TZC301-TZC308

(2) A3:铁合金地下料仓振料机TVF01-TVF14;铁合金上料皮带机TBC01-TBC03+TBC04正转、TBC04T推杆反限位+TBC06-TBC07;铁合金炉后卸料小车及推杆TXC2、TXC2T;铁合金炉后料仓:LHC01-LHC06、LHC201-LHC206、LHC301-LHC306

(3) A4:铁合金地下料仓振料机TVF01-TVF14;铁合金上料皮带机TBC01-TBC03+TBC04反转;1#精炼上料皮带JBC01;1#精炼铁合金卸料小车及推杆:1JXC1、1JXC1T;1#精炼料仓:SBN01-SBN16

(4) A6:石灰窑输送皮带机;铁合金上料皮带机TBC02-TBC03+TBC04反转;1#精炼上料皮带JBC01;1#精炼铁合金卸料小车及推杆:1JXC1、1JXC1T;1#精炼料仓:SBN01-SBN16

(5) A7:铁合金地下料仓振料机TVF01-TVF14;铁合金上料皮带机TBC01-TBC03+TBC04正转、TBC04T推杆正限位+TBC05;2#精炼上料皮带2JBC01;2#精炼铁合金卸料小车及推杆:2JXC1、2JXC1T;2#精炼料仓:JGC01-JGC216

(6) A8:石灰窑输送皮带机;铁合金上料皮带机TBC02-TBC03+TBC04正转、TBC04T推杆正限位+TBC05;2#精炼上料皮带2JBC01;2#精炼铁合金卸料小车及推杆:2JXC1、2JXC1T;2#精炼料仓:JGC01-JGC216

其中A1和A5流程之间以及A2、A3、A4、、A6、A7、A8流程之间的共用皮带机很多,如何实现在不停共用皮带机的条件下,各流程的正常切换操作是上料系统实现自动化的关键。

3 程序设计的主要工艺依据

3.1 外部控制

(1) 皮带机要求顺着到所上料仓的上料方向逆起顺停。
(2) 皮带机控制从属于流程选择方式:自动、手动、非常手动。
(3) 当皮带工作机在自动方式时,振料机、卸料小车及推杆根据需要可以工作在手动或非常手动方式。
(4) 进行更换料种、转流程操作时,卸料小车及流程都要选择自动方式,而振料机可以根据需要工作在自动或手动、非常手动方式,只有在自动和手动方式下振料机和所上的料仓之间有连锁关系, 以免因操作失误造成混料。

3.2 连锁控制

(1) 振料机在自动、手动、非常手动等上位操作方式下,只要振料机下的皮带机未运行,振料机不运行。
(2) 当所设定的上料重量完成后,振料机自动停机。
(3) 振料机在自动、手动操作方式下,当所选择的上料料仓到达高料位或高高料位时,振料机自动停止。
(4) 无论皮带机在什么操作方式,只要所选择的上料料仓到达高高料位,皮带机都执行急停操作,但经操作工确认后可以继续启动皮带机清料,以便清空皮带上的余料,为下次上料做好准备。

4 控制系统设计

4.1 硬件配置设计

为了实现以上功能,我们采用了施耐德公司的QUANTUM系列PLC, 包括一个本地的16槽机架,一个16槽远程机架, 一个16槽扩展机架,由于上料系统所涉及的设备分布较为分散,按照常规的电气设计,从现场设备到PLC的信号模块将需要很多控制电缆,无论给电气施工还是维护都带来很多不便,为此我们采用了TURCK公司的PROFIBUS DP远程I/O模块,解决了现场设备信号的可靠传输问题,系统硬件配置原理如图1所示:


图1 系统硬件配置原理图

4.2 典型上料控制流程图设计

无论在自动、手动还是非常手动方式,都需要实现卸料小车的准确定位,这也是一个典型的利用接近开关进行多点定位的应用,为此利用QUANTUM系列PLC CONCEPT编程软件的子程序功能,针对辅原料系统和铁合金系统小车定位的不同特点,编制了专用的定位子程序,并在子程序中考虑了小车定位过程中可能发生的各种异常情况如:小车移动超时、接近开关失灵、铁合金小车推杆不能正常到位、小车移动极限位置保护等,即优化了程序结构,又保证了程序运行的安全性。以较为复杂的更换流程为例,程序控制方框图如图2所示。


图2 程序控制方框图

5 结束语

转炉上料系统涉及设备多、操作方式多,如果用常规的操作台进行操作,设计将非常烦琐,为此我们采用了根据Monitor Pro上位监控软件编制的上位操作和监控系统,包括辅原料高位料仓、铁合金中位料仓、铁合金炉后料仓、精炼铁合金料仓的上料操作及上料系统设备的运行监示、故障诊断及报警,料位机、皮带称、料位开关等上料系统仪表的显示,实现了设备运行的可视化,Monitor Pro工作在普通的PC机上,运行于bbbbbbs 2000或XP操作系统,采用Client/Server结构,网络功能强大, 具有超大容量实时数据库,对实现上料系统的操作监示起到了重要作用。

通过采用QUANTUM系列PLC和Monitor Pro上位监控系统实现了我公司转炉上料系统的自动化,并通过多种操作方式的实现,提高了系统运行的可靠性和对各种现场设备状况的适应能力,提高了上料系统的运行效率,减轻了操作工的劳动强度

1 引 言

在内燃机动力装置的船舶上,锅炉是船舶的重要辅机设备,主要产生蒸汽用于加热燃油、主机暖缸、驱动辅助机械及生活杂用。当前船舶机舱自动化的要求越来越高,锅炉的自动控制在实现无人机舱中是必不可少的。但是目前我国船舶(特别在远洋渔船)上,虽有一定程度的自动化控制,但控制系统基本上是采用接触器—继电器系统, 系统线路复杂、可靠性差、维护工作量大。为改造船舶设备,改善船员劳动强度,提高生产效率, 采用可编程序控制器来实现锅炉的自动控制, 可以使线路简单、可靠性提高、维护方便且容易实现现场调试等。可编程序控制器控制系统的经济性能比高于接触器—继电器控制系统。

2 设备与工艺要求

本文主要针对的是船舶辅助燃油锅炉,其蒸发量一般为0.45-2.5t/h,蒸汽压力在0.3-0.7Mpa左右,但只要简单修改PLC程序就可以适用不同型号的船舶锅炉。船舶锅炉自动控制一般有以下几个环节:蒸汽压力自动控制,燃烧程序的自动控制,锅炉水位自动控制,保护与报警。

系统的全自动起动、停炉和故障事件处理,按照要求在PLC中编制用户程序,实现:给水、扫气、点火、燃烧等过程的全自动起、停控制。锅炉定期定时保养维护的自动提示和超期不维护的系统自动闭锁。为配合燃烧,PLC在系统的起停运行中,根据控制要求自动起停风机电机和开闭风门完成扫气工序,并根据燃烧情况,控制风门的开闭大小。此外,风机电机故障、炉内压力超限联锁、燃烧发生故障的联锁控制和报警处理,报警联锁等控制处理等也由PLC用户程序实现。

2.1 水位控制

采用水位计对水位进行检测,根据控制需要将3个水位(下限水位、下下限水位、上限水位)的3个开关量信号接入PLC,经PLC控制水泵电机,实现合适给水量的控制、低水位联锁、报警处理给水水泵电机故障时的联锁控制等,使系统全自动平稳地运行。

2.2 蒸汽压力控制

蒸汽压力通过压力传感器测量实现。水位正常时,如蒸汽压力在0.4-0.46Mpa时锅炉正常燃烧;当负荷减少时,蒸汽压力上升到0.46Mpa时锅炉停止燃烧;如故障蒸汽压力仍上升至0.49Mpa时,切断电源并发出报警;当蒸汽压力下降到0.4Mpa以下时锅炉重新点火燃烧。

采用压力传感器测量当前蒸汽压力,通过压力开关,信号接入PLC的两点开关量输入,或者用压力传感器测量通过变送器将信号接入PLC的一路模拟量输入,实现两级燃烧(大、小火)控制和压力上限保护及实时监视。

2.3 燃烧程序自动控制

燃烧系统的自动控制就是蒸汽压力的自动控制。汽压是燃烧自动控制的被控参数。对锅炉发出起动信号后,自动起动油泵和风机,并把风门调到大而不向炉膛内供油,用压缩空气大风量吹扫,即“予扫风”,以防止点火时发生“冷爆”。预扫气结束后自动把风门关到小位置,打开点火喷油电磁阀,喷入少量燃油;同时接通点火变压器进行点火。点火成功后,自动断开点火变压器,燃油电磁阀正常打开,进入正常燃烧。

2.4 自动保护和报警

按照要求在PLC编制中实现过水位保护、高水位保护、点火失败报警、燃烧熄火报警等。

3 系统设计

3.1 PLC选型及I/O分配

根据以上控制要求,船用辅锅炉控制系统采用FX2N-32MRPLC,它是日本三菱公司的产品,具有运行速度快,功能强,提供的I/O点数为16/16,除实际使用外,有足够的余量供系统以后扩展。模拟块采用FX2N-4AD和FX2N-4DA。提供4路输入和输出。通信模块采用FX-232AWC。

本系统PLC的I/O分配表如表1。

为了节能,锅炉控制系统中的给水、燃烧控制部分能采用变频器,那么整个锅炉的控制水平(如温度、压力、水位的控制精度)将可得到较大的提高,并且其节能效益是十分明显的,这点在很多的锅炉系统,特别是较大容量的锅炉控制系统中己得到证实,其明显的节能效益使得由于使用变频器带来的控制系统成本提高在短期内就可得到回收,所以我们设计的控制器在这方面作了改进,以适应不同的要求。

同时为了利用船舶主机排出的废气余热,在控制系统中加入了主机废气控制开关。

表1 PLC的I/O分配表

3.2 系统软件设计

按照船舶锅炉的全自动控制流程,在PLC中编制用户程序[2]。图1、图2为控制系统程序。


图1 系统程序图

按照船舶锅炉操作规程,每次开炉点火前先打到自动控制位置。检测水位是否正常,正常则检测油温和油压是否正常,正常则进入点火程序。锅炉点火燃烧后,当蒸汽压力达到正常供汽时(0.46MPa)。供水系统通过PLC首先判断水位是否在上限与下限范围内,若在此范围内则水泵进入恒压供水状态,并不断检测锅炉水位。当水位到达上限时,水泵停止,并继续检测水位;如水位高于上上限时,输出报警,请求排水。如到水位低于上限时,重新起动另一台水泵进行供水,以使水泵交替使用。如运行中检测到水位低于水位下限时,则两只水泵同时运行;当水位升至高于下限时,关闭一台水泵,加另一台水泵继续在工频状态下供水。如水泵工频运行水位仍继续下降并低于水位下下限时,PLC报警并控制锅炉停鼓风压火,直至高于水位下下限时,才解除鼓风停机恢复正常工作,从而完成供水联锁控制。若上述供水系统切换到手动方式,也必须由PLC进行联锁控制,以保证供水正常,锅炉安全运行。


图2 系统软件图

3.3 PLC控制的实践试验

由于船用辅锅炉燃烧控制中变量较多,所以控制电器用量较大, 为探索研究新技术应用,所以采用了可编程序控制器实现。考虑增大输出功率,故用小型中间继电器作为输出形式,以储备功率和隔离中小功率设备间的电联系。

在实践中,PLC输入回路设置了人工与自动控制方式的选择,在人工操作时, 各种功率元件的起动、停止及锅炉燃烧按钮仍然存在着。也保留设备安全运行报警等各环节。在自动选择时,设有各种压力和水位控制的各检测输入量。为调整方便,附有各人工模拟开关量输入,以备设备自检的需要。在船舶实际运行工况中,有主机排气的废气等设备的附加受热面,所以设有废气开启阀控件作为联接需要

1 引言

随着海洋石油勘探开发事业的发展,开发海域逐渐由浅海向深海延伸,导管架、海上平台也向着高、大、重的方向发展。海上作业所需的水泥浆量也越来越大,对水泥浆质量的要求也在不断提高。采用PLC对水泥浆生产过程进行控制,实现生产全过程的自动化,能够提高生产效率、降低生产成本和工人的劳动强度。

灌浆机是高度自动化设备,包括水泥、水、添加剂等按照一定的配比自动进料,搅拌,灌浆等几部分。搅拌好的水泥浆储存在搅拌器中,搅拌器的双层叶片不停的搅拌,防止在灌浆过程中水泥浆凝固,泥浆泵把搅拌器中的水泥浆压出灌浆机。系统的工艺流程如图l。


图1 系统工艺流程图

2 系统控制方案

水泥灌浆机自动控制系统由可编程控制器(西门子S7-300)、人机界面(HMI,西门子TP27-10)、料位传感器和称重传感器等几部分组成。控制系统框图见图2。


图2 系统控制框图

控制核心是西门子的S7-312CPU和数字量输入模块、模拟量输入模块以及数字量输出模块组成,并配有EEPROM存储卡使PLC程序可以掉电保护。完成开关量、模拟量输入、数据检测、逻辑运算和过程控制,实现水泥浆生产过程自动控制。所有的设备输入输出信号直接进入PLC,由PLC来进行控制。

2.1 控制内容

(1) 输入部分
l 四个水泥料位传感器;
l 混炼器排除阀的行程开关;
l 手动、自动操作切换开关;
l 9个电机的手动启动和停止按钮;
l 三套称重传感器输出信号4~20mA;
l 电极测量传感器输出信号(水罐、添加剂罐、搅拌器高低各两个);
l 测灯按钮;
l 其它输入信号等。

(2) 输出部分

l 9个电机的启动和停止指示灯;
l 9个电机的输出控制信号;
l 三个料斗的入料电磁阀,双动控制;
l 三个料斗的出料电磁阀;
l 添加剂排料槽控制;
l 混炼器的出料气动闸阀控制;
l 报警指示、警铃信号;
l 空气吹扫电磁阀;
l 水泥料斗振动器;
l 其它输出信号等。

2.2 人机界面

人机界面用带有RS-485通讯接口的西门子TP27-10触摸屏。HMI程序由运行监控、操作界面、参数设定、物料管理、及各种统计报表打印等模块组成。采用全部汉化用户界面。具有界面友好、操作简单、功能强大等特点。其中HMI主界面见图3。


图3 HMI主界面

通过运行监控界面用户可以在触摸屏屏幕上直观的看到现场的生产运行情况。把电器柜所有转换开关置为PLC,系统得电后,在界面上选择PLC自动,通过点击屏幕上的“启动”按纽来启动系统,进入自动运行。屏幕上将动态显示各料斗中的配料量和其他设备如:混炼器、搅拌器、电机、各阀门的运行情况。

(1) 操作界面:当选择PLC手动时,就可以在操作界面对系统中的各个设备进行单独控制,在检测、调试和紧急情况下使用。
(2) 参数设定:参数设定界面主要目的是方便对系统运行过程的一些重要参数进行修改。包括配料参数的设定,搅拌参数设定等。
(3) 物料管理:管理物料进料和进行物料用量统计。
(4) 统计报表打印:方便用户对运行过程中的归档数据,如生产记录、配料详细记录和物料消耗情况进行打印输出。

我们还充分利用西门子软件灵活多样、丰富的指令,设计出了模块化、结构化的程序,使得程序具有良好的可读性、可维护性。

3 物料传送控制

传动部分包括水平螺旋传送、垂直螺旋传送、缓冲罐、计量斗、混炼器、搅拌器和泥浆泵等组成。系统运行以后,水平螺旋和垂直螺旋将水泥传送到水泥缓冲罐,水泵将外界淡水送到水缓冲罐, 添加剂泵将各种添加剂传送到添加剂缓冲罐。PLC采集称重传感器数据,控制各缓冲罐出口阀做相应的动作。各计量斗秤值重量达到预先设定值,计量斗出口阀打开,在混炼器搅拌45s以后, 打开浆液阀,泥浆进入搅拌器。通过泥浆泵将泥浆输送到外界供现场使用。

为了使水泥在混炼器中搅拌均匀,减少灰尘,程序中设定水计量斗中的淡水排放完毕,然后打开水泥计量斗出口阀门。因为水泥是粉尘状颗粒,容易黏附在一起,因此,在水泥计量斗侧壁安装有振动器。

4 物料称重配料控制

该部份由称重传感器、电磁阀、料位传感器、行程开关等组成。输入量模块采集现场信号,传送到CPU模块进行计算处理,然后通过输出模块输出信号,控制现场各种开关、电磁阀和电机等。

根据原料配比不同,添加剂称重传感器大量程150kg,水称重传感器量程3t,水泥称重传感器量程6t。称重传感器将配料重量转换成(4~20)mA的电流信号,经PLC的模拟量输入模块进行A/D转换后输送到CPU与预先给定的重量进行比较,CPU按照给定的控制规律进行计算,然后发出控制信号控制各种配料严格按比例送入混炼器中搅拌。

在称重配料的过程中,机械装置运行时的波动,比如气动电磁阀气缸的压力波动,造成给料装置的动作滞后:物料下落的冲击力;配料系统发出关闭信号后原料的过冲量(空中余量),因物料料流的不稳定导致过冲量的随机变化(为关键的因素)。这些因素造成了称重配料误差。

为了减小称重配料误差,系统把称重过程分为粗称和精称两个阶段。在缓冲罐出口安装两个气缸串联。在粗称阶段,缓冲罐出口的两个气缸全部打开,缩短给料时间。当给料量达到设定量的90%,进入精称阶段,此时,关闭90%的缓冲罐出口气缸,小量给料以提高称量精度。系统中的机械结构、称重传感器、模拟量输入模块等环节都存在一定的误差,终反映为作用于传感器的实际值与触摸屏显示值之间的误差,这个差值我们称之为系统的非线性误差。这一误差可以通过函数校正的方式来消除。假设作用传感器的力为F(i),对应的显示值为M(i),由数组F(i)和M(i)的拟合,可以得到一个校正函数:F=f(m)

由于系统误差是各个环节共同作用的结果,因此校正函数一般有多个拐点,为了保证测量精度,本系统中采用分段小二乘抛物线法来分别求出各段的拟合多项式:F=a+bm +cm2

5 结束语

该系统采用可靠性高、抗干扰能力强的可编程控制器和触摸屏,可以实现PLC自动/手动和手动三种配料功能。当自动系统有故障时,可切换至手动方式配料,继续生产水泥浆,保证用户生产的连续性,减少损失。触摸屏编程为图形化操作,可以动态显示当前配、卸料等生产状态,简单直观,操作方便。可以存储实时生产数据,读取历史数据,实现生产数据打印。二次计量进料方法,使整个自动化搅拌系统精度得到了提高。水泥搅拌自动控制系统的研制成功改变了以前依靠进口设备的状况,大大降低了生产费用、提高了生产效率和系统的可靠性。


展开全文
优质商家推荐 拨打电话