西门子模块6ES7214-2AD23-0XB8保内产品
1 引言
在焦碳生产工艺过程中,需要将气煤、肥煤、焦煤、瘦煤四种煤按一定比例配成混合煤,然后送入焦炉进行高温炼焦。配比的准确性以及配料系统的可靠性将直接影响焦碳产品的质量。因此,通过提高焦化配煤系统的可靠性、稳定性、准确性来提高焦碳的质量具有非常重要的社会效益和经济效益。
目前,武钢焦化厂备煤车间担负着公司燃煤接卸、炼焦和输送的工作。原配煤设备共配置了14套,经过多年使用,已老化严重,该设备有如下缺陷:
系统调节精度差,影响配煤比的精度;主要附件电子秤可靠性差,且易损坏;
抗干扰能力差;电子秤标定复杂,工作量大;调速性能差,设备运行可靠性差,现场维护工作量大;岗位工人的劳动强度大,环境差,无自动配料功能。
因此,必须对配煤系统进行改进:用核子秤进行计量,设置上位机进行配料自动控制,建立配料模型,统计打印,下位机采用PLC进行电机、皮带顺序控制、料流计量、圆盘速度的控制。圆盘给媒机采用变频器驱动控制,确保系统配煤误差<2%。|
2 系统结构
在系统中我们将采用PLC可编程控制器加上核子秤配料系统,并在系统结构上采用主皮带配料方式(一条龙配料方式),这样新的配料系统可不加小皮带,使该项目投资及用户日后的维护量达到小、少。该配煤系统可分为物料计量、微机操作、控制、变频调速四大部分。
2.1 控制系统组成
PLC可编程控制器采用MODICON公司的产品,它的CPU模块为CPU11303、电源模块CPS11400、8通道模入模块ACI03000、4通道模出模块14ACO02000、开关量输入模块 DDI35300、继电器模块DRA84000、高速计数模块DRO84000,编程软件采用MODSOFT软件。 上位机为IPC研华工控机(包括显示器、打印机),采用FIX组态软件编程。电机的变频器为日本安川G5A40111A。工作流程图如图1所示;控制系统原理图如图2所示。
2.2 上位机功能
上位机采用先进可靠的研华工控机作为管理机,工艺流程动画显示美观大方,友好的操作界面简单易学,其功能如下:
图1 工作流程图
图2 控制系统原理图
⑴ 各种配煤操作界面、数据显示及打印管理,用户可方便的在上位机上进行各种数据的修改操作,运行数据的图形显示及打印各种报表;
⑵ 通过网卡与控制部分的配料模块和开关量控制模块相联,能够下载计量、控制、系统参数,以及核子秤命令、精度测试命令等,同时能够上传各模块当前状态和参数。
2.3 控制系统功能
控制部分是由开关量控制模块和配料控制模块组成,核子秤内部控制模块之间的信号传输采用差分频率信号传输技术,具有极强的抗干扰能力和远传能力,从而保证了系统信道的可靠性和准确性,在反馈控制上采用新型的人工智能PID调节算法,无振荡,无超调。各模块功能如下:
⑴ 开关量输入模块
该模块能实现系统总流量、配比、水分的选择,各种皮带启停信号的输入和配料模块启停信号输出,控制信号及大屏显示接口,连锁及配料控制和上位机的通讯,并留有备用选择器。
⑵ 配料控制模块
配料控制模块能实现信号的采集、计算并与给定流量比较将误差量按照控制算法进行计算,转换成4~20mA模拟量信号,发送给变频调速器,调节电机转速从而改变当前下料量,确保精度。
从控制方案实施可见:新配料系统在上位机系统出现故障时,系统除打印报表功能无法实现外,其它控制部分均能正常工作,对整个配料系统无影响。由于在设计时将控制分散到控制模块而将管理集中在工控上位机中,因此系统不仅保证了高可靠性的控制功能,而且又具有良好的用户界面和管理功能,在硬件设计中考虑了配料控制模块的可维护性,用户只需要较少的微机及控制理论知识、维护经验,就能及时方便地确保整个自动配煤系统连续可靠的运行。
2.4 报警功能
当系统各测量单元出现故障时,工艺流程主画面将以警示色提醒用户,按下相关键后,可由CRT显示故障代码;当系统出现空仓或圆盘给料机堵料而无法下料时,工艺流程画面也以警示色提醒用户,同时出现声音报警,提醒用户及时处理。
2.5 其他功能
能对变频器进行自动/手动切换及机旁自动/手动选择。
3 控制原理
3.1 配比控制
由于给煤量的大小取决于多种工艺参数和检测结果,所以给煤任务来自于上位机的配比计算,计算机采用配比数学摸型,它是根据配煤总量和各种煤所占的比例,及所含有的水份等参数,结合配比专家知识和现场经验,计算各种煤的流量设定值,作为进行指导和校正的手段。这里可输入各种煤的成份,检验结果等信息,制定配煤方案,下达配煤命令。
3.2 自动调节过程
它是通过取消小皮带,并在集料皮带下直接安装核子秤,可实时取得各种给煤流量反馈值的电压信号(0~30mV),经变送器放大,并转换为4~20mA的电流信号,送至可编程控制器的A/D转换接口,经采样后,与上位机设定的各种配煤给定值进行比较,然后进行调节运算,其控制量经D/A转换接口送至变频调速器,以此来改变变频器的输出值,从而改变圆盘给煤机的转速,调整给煤量,使之与设定值相等,完成自动配煤过程,下煤量设定值的大小决定了圆盘转速,圆盘转速与下煤量成正比。
3.3 控制规则
(1) 若控制误差的值太大,则增加输出量,加强控制作用,实现快速跟踪调节;
(2) 若控制误差及其变化率均在允许范围内,则输出量不变,维持原控制作用;
(3) 若控制误差与其变化率的符号相反(如控制误差为正,而其值却在减少),且误差变化率相对于误差较小,则要加强控制作用;
(4) 若控制误差与其变化率的符号相反,且误差变化率相对较大,则加入“微分控制”;
(5) 若控制误差与其变化率符号相反,且二者值相近时,维持原有控制;
(6) 若控制误差与其变化率符号相同,误差增大趋势,则采用“比例、积分、微分”控制,增强控制作用。
4 系统实现的功能
4.1 PLC实现的功能
实现各配煤机的启动和停止;电机、皮带的顺序控制;配煤流量的瞬时、累计流量的计量;圆盘速度的自动控制,实现配料自动控制。
4.2 上位机功能
它能与PLC之间实现数据、信号传输通讯;每个圆盘下煤量设置;每台秤的称量值显示;配煤称量系统画面监视;圆盘运行情况监视;故障显示及报警;可作为PLC的编程器使用;根据配料模型实现配比自动计算功能;历史趋势显示,可查看任意时间段的生产数据曲线,分析生产情况;生产报表;从动态数据库中提取数据,生成各种报表,进行打印。
5 核子秤计量部分
根据焦化厂备煤车间现有的配煤计量设备PDS-7微机电子皮带秤已使用十多年,存在着设备老化,可靠性差等若干问题,直接影响着配煤比的精度。因此,这里应采用目前国际上比较流行的核子皮带秤,核子皮带秤与传统的电子皮带秤相比具有许多优点,其中主要的是不受皮带磨损、张力、振动、跑偏、冲击等因素影响,能长期稳定可靠地工作,值得一提的是它可在高温、多尘、强电磁干扰、强腐蚀等恶劣环境下可靠运行。
5.1 核子皮带秤工作原理简介
核子皮带秤的工作原理如图3所示,放射源在上方稳定地放射出g射线,在支架构成的平面内呈扇形照射至输送机上,输送机上的物料吸收一部分g射线,其余的射线照射至g射线探测器上,因射源发出的g射线为一常数,因此探测器探测出的g射线的多少,可反映出输送机上物料的多少,由此再根据相关的计算公式便可计算出某一时刻输送机输送物料的流量。
此方案的特点是核子秤的测量信号没有经过运算处理直接送入PLC系统,PLC系统需将核子秤的测量信号0~5V,或者是频率信号加以转换,然后进行相应的运算处理,才能得出秤重值,它的主要优点是省掉了二次仪表,降低了费用。
图3 核子皮带秤的工作原理图
5.2 技术要求及防护要求
(1) 秤体采用不锈钢体,秤体的安装对皮带传输装置的运转水平不生产任何影响,不改变其结构;
(2) 每台核子秤的每次配煤精度优于1%;
(3) 本系统一机带14台核子秤的硬件配置方式,必须满足多物料、多品种配煤工艺,提供料选、配比等人机对话,自动切换等功能。具有统计配煤量、报表、打印、校准、故障诊断等功能;
(4) 工控机必须设有专用接地极且接地电阻<4W。
6 结束语
本系统实现了14台圆盘配煤机的启停、联锁保护、称量及调节的自动控制,实现配煤生产自动化。控制方式采用自动和手动操作两重方式,在自动方式下,各配煤回路的设定及控制,配煤的在线更改等都由计算机自动完成;在手动方式下,根据核子秤测量的值手动调节圆盘转速,进行配煤控制、人工启停设备,在这两种方式下,都设有主要设备紧急停运按钮。通过改变变频器输入信号方式,可方便地进行手动/自动切换,切换冲击小,生产进行顺利。
该系统在实际生产中取得良好的经济和社会效益,能够满足各项经济技术指标,满足控制精度要求,具有广阔的应用前景
1 引言
可编程序控制器随着其功能和外围接口模块的不断增加,在工业控制场合的应用越来越广泛,将逐渐取代工业控制中的某些专用设备,从而使控制系统的成本降低、体积缩小、控制方式易于改变。PLC的功能很强,除逻辑运算外还可以完成复杂的数学运算和完善的通信能力,用PLC超强的功能实现自动张力控制可以减少系统的复杂性,提高系统的性价比。
本文介绍了在某外资企业宽幅六色转移印花机改造过程中,采用欧姆龙CPM2A的计数和模拟输出功能取代放卷装置的自动张力控制器的应用。
2 CPM2A可编程序控制器
CPM2A是一种紧凑的、高速度的可编程序控制器,在一个小巧的单元内综合有各种性能,包括同步脉冲控制、高速计数器输入和中断、脉冲输出位置控制、模拟量设定、间隔计时器中断和时钟功能,以及完善的通信能力等。CPM2A的基本单元有20、30、40或60点I/O端口,有三种输出方式可选(继电器输出,漏型晶体管输出和源型晶体管输出)和两种电源可选(100/240V AC或24V DC)。CPM2A可以外接扩展I/O单元和模拟量I/O单元,CPM1A-DA041就是一个四通道的模拟量输出单元,其模拟量输出有电压型和电流型,其输出信号范围完全满足工业控制的要求,并且输出端子与内部电路之间采用光耦隔离。
3 放卷装置自动张力控制原理
转移印花机的印刷质量,完全取决于放卷和收卷的张力控制,该机器在改造前采用的是手动张力控制,成品率较低,其产品质量完全取决于工人的熟练程度,所以,在整机的PLC控制改造过程中,也对张力控制部分一并改造,为了减少改造费用,选用了欧姆龙CPM2A-60CDR-D型可编程序控制器和CPM1A-DA041模拟量输出模块构成控制系统。其张力控制逻辑框图如图1所示。
自动张力控制的目的是控制印刷纸运动的线速度一定,据此,当放料轴转动一圈时,材料行走的距离如下:
由,式中d2及P为已知数,因此,d1的变化可由Pn的计算求得,所以可以将其转换成4~20mA的模拟信号输出,送到放大器用以控制离合器、刹车器、马达,以得到适当的张力。
根据以上原理,选用欧姆龙CPM2A-60可编程序控制器和模拟量输出扩展单元CPM1A-DA041作为中心控制单元,采用译码器检测测量轮的转速,采用接近开关检测放料卷的转速,通过计算利用CPM1A-DA041输出模拟信号以控制离合器达到恒线速的目的。其控制接线如图2所示:
4 控制软件流程
基于等线速度张力控制原理以及上述分析结果和控制系统接线图,为了实现张力控制将接近开关的输入00004设置成中断输入(计数模式),译码器输入00003设置成计数模式,开始前通过拨码盘输入P值(d2值固定不变,由程序设定),并将Pn的值与模拟输出4~20mA(0000~1770Hex)相对应,即输出标定。系统软件流程如图3所示。
5 结束语
本系统改造投入运行几年来运行可靠,使产品质量大大提高,取得了很好的经济效益。
1 引言
某厂抓矿行车采用绕线式异步电动机转子串接频敏电阻器进行启动和调速,这种继电器-接触器控制方式在实际运行中存在着以下问题:
(1) 行车工作环境恶劣,工作任务繁重,电动机所串频敏电阻器烧损、断裂和接地故障时有发生,造成电动机频繁烧损;
(2) 由于机体震动及导电性粉尘环境,继电器-接触器控制系统的可靠性差、故障率高、维护困难、维护费用高、检修工人疲于维护;
(3) 转子串频敏电阻器调速,机械特性软,负载变化时,运行不平稳,且运行中频敏电阻器长期发热,电能浪费严重;
(4) 各接触器在大电流状态下频繁分断、吸合,造成电网高次谐波污染严重,电网功率因数低。
于是该厂采用了PLC代替了继电器-接触器控制,将变频器代替电动机转子串频敏电阻器的调速方式,改造后,运行效果显著,解决了以上问题。
2 PLC控制的行车变频拖动系统组成
2.1 系统组成
行车的大车、小车、抓斗提升、抓斗开闭电机都需独立运行,大车有两台电机同时驱动,小车、抓斗提升、抓斗开闭各为一台电机驱动,整个系统有5台电机。为了保证各部分安全运行互不影响,采用了4台变频器拖动,并用4台PLC分别加以控制,系统组成如图1所示:
图1 PLC控制变频拖动系统组成
PLC接收主令控制器的速度控制信号,该信号为数字量控制信号,信号电平为AC220V。这些信号包括:主令控制器发出的正、反转信号、电机过热保护信号、安全限位信号及启动、急停、复位、零锁等信号,全部信号采用汇点式输入。PLC针对这些信号完成系统的逻辑控制功能,并向变频器发出起、停、正、反转及调速等控制信号,使电动机处于所需的工作状态。
变频器接收PLC提供的控制信号,并按设定向电机输出可变频、变压的电源,从而实现电机的调速。操作人员按实际需要通过主令控制器向PLC发出各种控制信号。
提升电机在下放重物时,电机反转,由于重力加速度的原因,电机处于再生制动状态,拖动系统的机械能转化为电能,并存储在电压型变频器的滤波电容器的两端,使直流电压不断上升,甚至能够击穿电器绝缘,当电压上升到设定值时,接入泄能电阻来消耗直流电路的这部分能量,保证变频器安全运行。
2.2 变频器与PLC通信
系统采用现场总线方式代替传统的模拟量或开关量方式控制变频器。系统中,小车及提升变频器通过选件模块连接至Profibus-DP总线上,综合考虑数据传输的实时性及稳定性,系统选用PPC-3作为数据传输格式,波特率选择387.5kbps。采用总线结构后,系统进一步优化,具体表现如下:
(1) 布线简单
只需1根两芯的屏蔽双绞线,而采用别的方式至少要4根电缆,从而减少了维护工作。
(2) 给定稳定
避免了因信号的漂移、电磁干扰等诸多因素而引起模拟量给定抖动,因此系统速度给定更加可靠。
(3) 速度连续
相对于采用开关量作为速度给定的系统,速度给定由离散量变成了连续量,使得变频器可以接受来自PLC的速度微调指令,以实现抬吊作业平衡。
2.3 备用应急系统
当总线干缆或总线上某点出现损坏时,有可能使系统无法正常工作。因此,系统中设有一套备用的系统,以防止紧急情况下总线不能正常使用,但又不能停止作业的工况。变频器设有两套控制方式,一套采用总线通信,用于正常控制;一套采用开关量控制,用于应急状况。通过PLC切换两套参数,两套参数在手柄档位的速度给定上完全一致,因此从使用角度感觉不出两套参数的切换。
2.4 同步与纠偏
行车在抓斗提升抬吊作业时,系统进入自动纠偏模式,以保证吊钩在抬吊时钢丝位置同步。由于机械安装时磨擦阻转矩,机械抱闸的调整不可能完全一致,因此系统不采用动态实时纠偏,而采用一种折衷方案,其工作原理为:首先,系统在PLC中设置2个阈值,阈值1用于启动吊钩的自动纠偏,阈值2用于结束自动纠偏;其次,PLC读入安装在起升卷筒上编码器的数据并实时计算起升高度;再次,PLC比较所读入的2个起升高度,当2个高度之差大于阈值1时,PLC将一个微小的速度偏差量叠加在由手柄确定的基准速度上,当两个高度之差小于阈值2时,取消该偏差量,通过惯性进一步减少起升高差;后,PLC将计算合成后的速度值能过Profibus-DP下载至变频器中,作为抓斗提升电机的速度给定。
3 PLC软硬件设计及应用
3.1 PLC的硬件设计
行车大车、小车、抓斗提升、抓斗开闭电机分别由不同的PLC控制,大车、小车、提升、开闭电机都运行在电动工作状态,变频器及PLC的控制结构及软、硬件实现基本相同。提升电机运行状态有电动、反接制动、再生制动等状态,变频器及PLC之间的控制结构较大车、小车复杂。以提升电机为例,其PLC的I/O接线如图2所示,变频器接线图如图3所示。
3.2 车的工作过程
图2 PLC系统的I/O接线图
图3 变频器接线图
当行车的驾驶室及横梁拦杆的门关好后,1#、2#安全开关的常闭接点打开,急停开关断开,主令控制器置于零位,此时才能按下启动按钮,接通电源。当主令控制器置于上升档位,电机正转,通过调节速度档位,控制变频器输出不同的电压,达到调节抓斗提升电机的转速。当主令控制器置于下降3挡且满负荷时,电机正转,此时电机处于反接制动状态。当主令控制器置于下降2挡且负荷较重时,为强制下降阶段,电机反转,在重力加速度的作用下,电机进入再生制动状态。另外,当电机由稳定高速向低速换档极快时,电机也会进入再生制动状态。当主令控制器置于下降1挡时,电机反转,处于电动状态。运行中,不论何种原因电机停止运转,为防止重物急速下降,保留了原来的三相液压制动器。
在紧急状态下,可按下急停按钮,一方面机械制动器动作,另一方面,将变频器紧急停机控制端EMS接通,变频器停止工作。当抓斗提升电机因故障跳闸,热继电器动作,电机过载等动作,在故障排除后,可按下复位按钮,接通变频器复位控制端RST,使变频器恢复到运行状态。
3.3 PLC的软件设计
选用FXON系列PLC,采用摸块式编程,具体模块如下:
(1) 高度换算功能块。用于将格雷码转换成二进制码,二进制码转换成起升高度及起升高度偏差调整;
(2) 变频器开关量控制功能块。用于大车、小车及抓斗起升变频器起动、停止和速度给定的开关量控制;
(3) 变频器的通信控制功能块。用于大车、小车、提升电机变频器的启动、停止、速度给定。还用于变频器的控制字与状态字的读取。图4为大车的软件控制流程图,小车、提升电机、开闭电机的软件流程图和大车的相似。
3.4 安全保护措施
(1) 配电部分:除设有缺相、过流、短路等保护外,还在行车两侧端梁及平台处设置2只安全开关,只有开关均闭合时,才允许行车运行。在行车上还设有登机请求及应答按钮,用于行车工作中其它工作人员的安全登机。
(2) 变频器部分:选用的ACS600系列变频器具有电机过载、缺相、接地、过流、直流母线过压等保护,抓斗提升电机及小车变频器当切换至总线控制方式时具有通信故障监视功能。
(3) 行程开关保护:各机构均设有行程限位保护。单动工况时,小车及抓斗提升限位开关各自独立;联动工况时,小车1后限位及小车2前限位作为联动工况允许条件,小车1前限位及小车2后限位做为小车限位,起升1及起升2只要有一个限位动作,则视为起升限位。
(4) 其它保护:所有机构均有零位保护、过流保护。抓斗提升机构还有超载保护及超速保护。当超速开关动作时,断开变频器主接触器电源。
4 结束语
PLC控制的变频拖动系统应用到行车,各电机各档速度、加速时间、制动时间都可根据实际工况条件设定,而且十分方便。从运行结果来看,负载变化时,电机速度运行平稳。设备的故障率大幅度降低,电机烧毁明显减少,同时减少了到电网高次谐波的影响。设备检修时排除故障的速度明显加快,设备维护量大大减少。