浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7222-1BF22-0XA8详细解读

西门子模块6ES7222-1BF22-0XA8详细解读

 滤池系统的控制任务
2.1工艺要求
    第二自来水厂新扩建的V型滤池共设六个滤格,每格安装有一个液位计、一个阻塞仪,每滤格均有各自的进水阀、清水阀、气冲阀、水冲阀以及排水阀和排气阀。用于气冲的鼓风机有3台(两用一备);用于水冲的3台反冲洗泵(两用一备);两台空气压缩机(一用一备);1台干燥器。
    待滤水进入滤池的各单元滤格,经石英沙恒速过滤后,再进入清水池。过滤的工艺要求滤格内的水位保持在滤料上的1.2米处,在这个水位上,过滤的效果好。为实现等速恒水位过滤,就要使滤池的出水量等于进水量,应根据滤池水位变化来调节出水阀的开启度以控制出水量的大小。而当滤池的运行满足反冲洗的约束条件时,需要进行反冲洗清洁滤沙。反冲洗是通过控制滤池进水阀、清水出水阀、反冲进气阀、排气阀、反冲进水阀、反冲排水阀并运行反冲水泵、风机等来实现的。
    因此,滤池控制系统的任务主要是过滤时的液拉控制和清洁过滤砂时的反冲洗控制,过滤和反冲洗不断循环交替进行。
2.2对控制系统的性能指标要求如
(1)实现自动恒水位过滤,误差:±1.5㎝;
(2)根据下列约束条件之一,能准确地实现自动反冲洗:
•过滤时间达到反冲洗设定周期(如48小时)仍未反冲洗的;
•过滤水头损失值到达设定值(150)且延时时间(15分钟)已到,仍未反冲洗的;
•强制反冲洗按钮被触发。
(3)反冲洗周期、反冲洗过程中各步骤的时间均可通过程序设定,满足工艺及实际操作要求。
(4)能直观显示滤池过滤水位、水头损失及出水阀开启度,同时显示反冲洗设备、本地滤池阀门等的开关状态。
(5)对反冲洗设备、本地滤池阀门及反冲洗过程既可以实现全自动控制,也可以进行手动控制。
3 滤池的控制原理与运行过程
3.1 恒水位控制原理
    滤池的恒水位控制如图1所示。
每个滤池将滤池水位检测值和水位设定值进行比较,得到水位偏差信号Δe,经PID运算后把输出信号送给输出附加处理程序,再输出给出水阀的伺服电机以控制出水阀的开度。开度增大的数值是由一定累积时间内水位上升的速度及水位偏差共同决定的。若进水流速越快,出水阀开度就越大,反之越小。PID运算的目标是把水位保持在设定值,附加值可作为补偿添加到输出控制中。输出附加处理程序是把PID的运算结果按一定的规律输出给清水阀伺服电机。

图1滤池恒水位控制系统图


3.2 反冲洗过程
    当控制系统接收到反冲洗指令信号时,按照先进先出的原则排队进行反冲洗。反冲洗分气洗、气水混合洗、水洗三个阶段,过程如下:首先关闭待滤水进水阀,当水位降至设定的反冲水位时,关闭清水出水阀并打开废水排水阀,排水阀的信号到位后先关闭排气阀,再打开反冲进气阀,启动台风机进行气冲,气冲需要时间1-3min;完成后,打开反冲进水阀,再启动第2台风机及第1台水泵,进行气水混合洗,时间为5min;然后关闭2台风机,关闭反冲进气阀,打开排气阀,启动第2台水泵,进行单水冲洗,需要时间3-6min,完成后关闭反冲进水阀,停2台反冲洗水泵,关闭排废水阀,打开待滤进水阀,打开滤后清水阀。当水位升到过滤恒水位时,系统又转入正常的过滤程序。
4 控制系统设计
4.1 硬件构成及网络结构
    本系统采用PC+PLC的构成形式。上位机由一台COMPAQ微机和两台打印机组成,下位机由模拟屏PLC8、公共冲洗PLC7和六个单元滤池PLC1-6共八台施奈德公司的PLC组成,如图2所示。
    各PLC采用双绞线电缆连成的总线形接出式拓朴结构通信网,其又称FIPWAY通信网,传输速率为1Mbps。各PLC之间彼此进行通信,实现数据共享。单元滤池和公共冲洗的PLC,均配备一台现场XBT—B(人工智能接口),它通过电缆与PLC联系,在XBT操作盘上可以对滤池进行现场手动控制。各单元滤池PLC通过FIPWAY网络与公共冲洗PLC相连,公共冲洗PLC又通过网络进入水厂中控室和微机联网,故系统能在中控室内对滤池的运行进行远程监控,实现了中控室计算


图2滤池自控系统网络图


机集中监控、PLC远程控制、现场XBT操作的三级控制,从而确保了滤池生产运行的安全可靠性。
本系统PLC配置如下:
    PLC8:TSX47/415的CPU/COM、POWER、DI各一块;DO为9块。模拟屏设有D/A转换器。
    PLC7:TSX67/455的CPU/COM、POWER、DO和AI(TSXAEM811)各1块;DI为2块。
    PLC1-6:TSX47/415的CPU/COM、POWER、DI、DO、AI(TSXAEM411)各1块。PLC与PC机的通讯,要先在PC机安装TE公司的专用FIPWAY通讯网卡,然后通过RS422通讯接口进行数据通讯。
4.2 PLC的控制功能
    单元滤池的PLC主要完成本格滤池的恒水位过滤控制和每格滤池的进水阀、出水阀、排污阀、反冲进气阀、排气阀、反冲水阀等的自动控制,及数据采集,并与公共冲洗PLC交换数据信息。当滤板下的阻塞仪将滤床阻塞程度信号转送给滤池单元PLC,PLC接收信号后,与水头设定值进行比较、显示出来,用以决定滤池是否要反冲洗,并传送至公共冲洗PLC。滤池的开启个数由进水流量决定,每个滤池由液位计和阻塞仪测出滤池的水位和水头损失值,并和滤后水阀门开度这三个参数送单元PLC,经PLC内置PID运算后,若水位偏差超过1.5cm时,PLC立即启动控制单元自动调整滤池出水蝶阀的开度,维持滤池水位基本恒定,从而实现恒水位过滤。
    公共冲洗PLC负责六个滤池的反冲洗排队协调、和对反冲洗设备(反冲水泵、鼓风机等)及其进出口阀门的监控。当单元PLC向公共冲洗PLC发出反冲洗请求时,公共冲洗PLC则开始启动反冲洗程序对该滤池进行反冲洗控制。当某滤格正在反冲洗时,若又有一个或多个滤池发出反冲洗请求信号时,则此信号被存入公共冲洗PLC存储器中,然后按存储先后顺序进行冲洗,排队等待反冲洗的滤池则维持正常的生产。
    模拟屏PLC的作用是驱动模拟屏工作及实现与水公司电台系统、微机的通讯。在模拟屏上能动态显示整个水厂的工艺流程和设备运行状态以及其主要的工艺参数,并实现声光报警,便于生产调度管理。
4.3程序设计
    当滤池满足反冲洗控制约束条件之一时进行反冲洗。本系统用一个反冲洗PLC实现六个滤池的排队反冲洗,通过公共程序的读写命令采集整组滤池的反冲信息及滤池具体水位情况并发出命令。公共程序的主要内容包括:反冲水泵风机控制程序、公共PLC与其他各单元PLC信息的读写程序和滤池排队程序。
    每格滤池的工艺过程基本相同,其PLC程序结构也相同,可用子程序的形式,如图3所示。每个滤池程序包括初始化命令及滤池的自动状态、手动状态、现场状态等程序。滤池自动状态程序包含反冲洗状态、整理状态、正常过滤状态三个子程序。滤池手动状态程序包含各个阀门的手动操作命令。滤池现场状态程序主要内容包含:(1)在滤池由自动状态转到现场时已发出的命令必须全部复位。(2)自动状态中的某些变量,如时间变量、计数器变量等必须复位。(3)针对反冲必须在这个状态下发出一个结束反冲命令。


4.4系统监控软件
    本系统上位机采用bbbbbbs NT操作系统,实时监控软件选用Wonderware公司的InTouch7.0工业组态软件,它主要包含bbbbbbMaker和bbbbbbViewer两个程序。上位机配备有遵循FIPWAY通讯协议的通讯网卡,实时采集生产数据。通过监控计算机可清晰地显示滤池的过滤、等待、反冲等运行过程中动态的工艺模拟画面,可对系统的所有设备进行远程操作和控制,并具备显示工艺布置图、实时动态参数、设备的工作状态及实时/历史报警信号、在线仪表的实时/历史趋势曲线、马达运行时间等功能,同时可进行离线/在线编程及设定参数的修改,编制和打印生产与管理报表。
5 新旧系统的联网问题
    由于新建的滤池系统与水厂原系统是用不同公司的PLC开发成的两套独立系统,两系统的通信协议不同,它们之间没有数据通信,这给生产和管理带来一定的麻烦。两期的监控组态软件都采用了InTouch,但所用版本不同。从技术改造成本和公司技术力量来考虑,决定利用InTouch基于以太网并兼容TCP/IP通信协议的网络功能来实现两套独立系统的联网控制。

具体方法如下:
    先用交换机组建一个以太网,系统示意图如图4,并在原系统监控微机PC1

    和新建系统监控微机PC2上分别安装TCP/IP通信协议、NetDDE程序。
    再对InTouch监控系统软件进行设置:a. 运行InTouch的开发环境bbbbbbmaker,利用“import”功能将新旧两期程序数据整合成为一个完整的应用程序,分别安装在PC1和PC2上,这样就可以在任一台PC上对生产进行监控;b.对InTouch的DDE Access进行设置,方法是在“Modify DDE Access Name”对话框中的“DDE Application/Server Name”栏增加“\\PC2\viewer”(在PC1上)和“\\PC1\viewer”(在PC2上)。通过这个设置,PC1和PC2就可通过以太网进行实时数据通信;c. 初始化NetDDE,运行InTouch bbbbbbviewer,PC1和PC2即可进行实时通信。
6 结束语
    滤池经一段时间的运行后显示出控制系统应用效果良好,系统的各项控制性能指标均能达到设计要求。在正常情况下,本滤池水位波动被控制在设定值的±1.5cm范围内,实现了自动过滤及六个滤池自动排队和反冲洗,并间接实现了与水厂原系统的联网控制,整个控制系统的设计基本满足了生产要求,达到了预期效果。

 传统的远程监控只具备数据采集功能,在需要实时控制和数据处理时,会显得力不从心。PLC 作为工业控制的核心部件,其在网络、通信等方面的能力越来越强,具备远程监控要求的数据采集、实时控制和数据处理功能。随着国产 PLC 市场占有量的提升,PLC 的价格也比以前更具优势,使用 PLC 做 DAS系统或者用 PLC 平台开发数据采集系统将是大势所趋或者说相当有吸引力的选择。德维森公司的 V80 小型 PLC 在供热、交通监控、楼宇监控等行业有许多的成功应用. 


  下面以其在东北某供热网监控为例说明 PLC 在数据采集和远程监控行业中的应用。 

  2、远程监控系统 

  供热网远程监控系统的示意图如下: 

060814PLC1

图 1 供热网远程监控系统示意图

点击此处查看全部新闻图片



  V80 系列 PLC 采集现场每个换热子站的温度、压力、流量,并根据采集数据进行供热流量的控制,以达到节能的目的。根据室外气温的变化,通过调节一级管网电动阀门的开度来及时控制二级管网的回水温度,通过调度给定的控制曲线,保证每个换热站的运行参数始终在给定的范围内。同时,中央监控室根据需要调度和遥控子站的电动阀门,调整运行参数。系统配置 GPRS DTU,可以实现温度的控制、补水泵变频的远程控制。上位机选用组态王组态软件,与数据库结合起来,对所有数据进行存储和分析,并可以配合优化软件进行优先控制。

3、PLC 特点 
   

060814PLC2

  图 2 V80 系统结构示意图 

点击此处查看全部新闻图片


 

  针对前面提到的各种问题,本文提出了一个更为优胜的方案,其特点如下: 

  1、 网络通信功能 

  V80 系列 PLC 可同时支持 2 个以上的通信口,可利用 RS485 通信口组建控制网络,把多台 V80 小型 PLC 组进同一个现场总线网络内,主控 PLC 上连接一个 GPRSDTU 模块,为监控网络提供透明的上网通道。选用 GPRS DTU 代替无线 RTU 可以大大降低成本,在敷设了电话线的地方可选用 Modem,使整个系统的造价达到优。 

  2、CPU 模块功能 

  M32DT 模块是 16 路数字量输入和 16 路晶体管输出的 CPU 模块,本身带有两个通信口,一个 RS232 和一个 RS485,内部带 MODBUS 主从通信协议和 FREE 通信协议,可以与各种 HMI 或者各种组态软件通信,通信协议库文件使各厂商自行开发上位机软件提供了诸多便利。 

  M32DT 内带 FLASH 存储器,可将各种参数存储在本地,还带有掉电保持功能,从而保证使用的可靠性和便利性。高速运算速度和完备数学运算能力使其更适合通信和模拟量处理环境。 

  3、抗干扰能力强 

  整个系统的宽温和宽电源供电设计使其可以在恶劣的环境中游刃有余,V80 系列产品已通过 CE 认证。 

  4、 编程简单方便 

  V80 系列 PLC 的编程语言支持 IEC61131-3 标准,可以方便编程。同时,支持在线编程,也就是在运行态下可以进行程序修改和调试,为监控现场的在线升级和扩展提供方便。 

  5、  

  V80 系列 PLC 比同样点数的数采模块具有价格优势,而且其图形化编程功能使其成为一个强有力的分布式监控平台。 

  4、结论 

  本文以供热网的远程监控为例,介绍了 V80 系列 PLC 联网、通信协议与第三方产品集成特点,说明 V80 系列 PLC 在数据采集和远程监控行业中的应用,实际运行结果表明 V80系列 PLC 是客户将采集、控制、远程监控合而为一的理想选择

  此系统属于食品机械的投入机的控制系统,系统包括触摸屏、可编程控制器、伺服、编码器、步进电机等,投入机主要功能是把呈带状脱氧剂或者是干燥剂,进行切断,然后按要求投入到包装线。在整个设备中,控制的主要要求是要切断准确,切断的位置偏差要在±5mm以内,而且要求速度可以很快,高速每分钟要达到170个;因为送料驱动使用的是步进电机,这样就会要求送料要有反馈,所以从动轮上安装了编码器做为反馈信号的来源,由于控制部件的组合以及于机械机构的联动配合问题,在调试时做了好多次软件和硬件的改进后达到了使用要求。
2 食品脱氧剂投入机工艺
  因为属于机械设备的系统,另外,要求精度也高一些,所以工艺过程相对复杂一些,主要要求如下:通过设定不同的料袋长度尺寸和间距,可以加工4种规格的产品;要求实际偏差不得超过±5mm;要求在连续运行时的加工速度要能达到每分钟170个;要求刀速和步进的速度都能有四个档的调整;报警上下限设定;偏差微调功能,并且显示微调值;要求有两个外部联动功能,启动不同的联动信号可以达到包装线联动的功能;要求具有生产计数的功能,可实现计数有效无效的切换。工艺过程如图1所示。 

 

图1工艺过程


3  系统设计
3.1电控系统设计
  (1)PLC系统需求分析。6个数字量输入;3个数字量输出;1个伺服控制;1个步进控制;1个由AB相的编码器发出的高速脉冲计数。

  (2)控制系统配置设计。触摸屏:台达DOPA57GSTD;PLC:台达DVP12SC11T ;伺服控制器:台达ASD-A021LA;台达编码器ES3-06CN6941;步进驱动器和电机;料检测接近开关;刀位检测接近开关;外部连动接近开关。
  触摸屏主要是用来显示和控制、报警、报警上下限设定、采集数据显示微调、报警数据显示、记录产量等;PLC主要是采集数据并计算,控制伺服电机和步进电机的动作,报警的判断和输出;伺服电机的作用是用来使切刀可以快速的切断干燥剂,并且准确的归位;步进电机的作用是快速的进料,并且进料要十分的准确;编码的作用是把从动轮的转动的实际角度采集出来,送给PLC。
3.2控制软件功能设计
  (1)系统的功能要求。可以设定干燥剂的长度和间距,以便可以切不同规格的干燥剂;
刀速和步进的速度是可设定的要能够分成几个档位,适应不同的要求;可以设定上下限报警,来控制误差的范围;显示报警画面、报警信息;报警上下限设定;具有偏差微调功能,并且显示微调值;要求有两个外部联动功能,启动不同的联动信号可以达到联动的功能;要求具有生产计数的功能,可实现计数有效无效的切换;要求具有复位功能,实现故障状态的复位;
除联动外还能实现连续运行和点动的功能;
  (2)技术难点分析。在以上的功能中重要的功能实现就是步进电机的控制,这也是难的部分,因为干燥剂长度的准确完全依赖于步进电机所走的行程,如果单纯靠固定脉冲数来控制步进电机,那么运行一段时间后一定会出现累计误差,会使所切的干燥剂长度相同但是会切到料上,所以必须使用编码器采集回来的脉冲数作为反馈来给步进发脉冲。
  (4)HMI(触摸屏人机界面)画面设计。主页;控制画面;参数设置画面;步进
速度设置画面;切刀速度设置画面;报警画面。
  (5)PLC模块设计。刀和步进速度设定;运行方式控制;复位状态控制;计数功能
;伺服和步进控制;报警控制。

4 机电系统调试
4.1 机电位移脉冲当量
  通过反复的试验得到一个试验值:就是料每移动1mm编码器的脉冲数是多少个,在这台设备上得到的数据是,每移动1mm编码器的脉冲数是5个,而且相对准确。
4.2 伺服频率当量
  通过反复试验得到两个数值:就是为达到每分钟加工速度为170个,那么对步进和伺服发出的脉冲频率是多少,经过试验得到的数据是步进额为4KHz,而伺服应该是80 KHz;其实,本来可以通过计算可以得到这个数据,但是,由于机械方面的配合和程序有扫描周期的问题,所以不能完全套用计算所得到的数值。
4.3 料位检测
  调整料检测的高度也是一个比较关键的环节,如果不能调整好高度会对切断的准确性起到决定性作用。
4.4 前机时间
  投入的准确性是靠调整前机时间来保证的,在食品盒到达投入口正下方之前要进行切断动作,而食品盒到达投入口正下方时干燥剂要正好投入到食品盒当中,送料停止到切刀切断之间的时间就是前机时间。

5 结束语
  此设备的使用台达的机电产品比较多,整合性能比较好,为客户降低了大量的成本,是单一电控技术平台为客户降低成本的很好的实例。针对国内食品机械的自动化程度较低的现状,还有很多自动化应用工程空间。食品脱氧剂投入机使用了台达的SC系列PLC来控制台达伺服系统,达到了使用要求。


展开全文
优质商家推荐 拨打电话