浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
6ES7231-7PD22-0XA8使用选型

6ES7231-7PD22-0XA8使用选型

1 引言
本工程是为某市供水系统设计的自动化控制系统,目标是以水厂蓄水池水位及供水的出水口压力为终控制对象实现优化调水。该城市供水调度系统主要包括两大部分:水源地引水采集系统及水厂恒压输水系统。水源地引水采集系统主要由现地供水井群组成。每组供水井群设一个现地井群集中控制室,每眼水井设一现地控制井房。现地井群集中控制室设有本组水泵启停集中控制系统,对水源地各水井泵的引水及变频泵的对外供水进行统一协调控制。水厂恒压输水系统主要由总控室中心控制系统、高低压配电系统、蓄水池、二泵房等组成,二泵房负责直接向城市供水,总控室中心控制系统作为远程监控站点,实现井群的远程集中管理和协调,保证优蓄水池水位和优出水口压力。总控室中心控制系统是整个调度系统的核心。
本项目采用Siemens S7 200和S7 300 PLC设计监控系统,采用Simatic WinCC作为上位机监控系统软件,系统集网络通信、现场总线、PLC控制器、工控机、微波通讯等先进设备和自动控制,远程监控等诸多先进技术于一体,充分体现了现代信息技术和自动化技术在城市供水系统中的应用。
2 控制系统构成
供水系统总体按现地站单井单元,现地站井群系统,上为中心控制站,中心总控系统四部分来设计,系统总体框图如图1所示。



图1系统总体框图
2.1现地站单井控制系统
现地站单井控制系统PLC使用S7-222,现地站井qunkong制系统PLC使用S7-314。两者以Profibus现场总线相连,在预定的信息周期内交换信息。现地站单井控制系统接收井群现地集中站S7-314的控制信号,完成整个单井系统的数据采集,实现对电机的手动、本地集中及远程控制,通过CP 340 通讯处理器和无线数传电台FC-201与上位中心控制系统相连,完成整个井群现地集站的数据采集和传送。井群画面如图2所示。


现地站井群PLC软件程序主要是与下位(各个单井)的通讯处理程序、与上位的通讯处理程序、井群泵启停本地集中控制程序、井群泵启停本地远程控制程序。
2.2二泵房控制系统
二泵房系统负责直接向城市供水,二泵房内PLC采用西门子S7-314可编程控制器,通过Profibus现场总线与上位机相连,它是泵房内控制柜的核心,接收上位机的控制信号控制变频调速,实现对电机启动、停止、复位等信号的逻辑控制;对压力、流量、水位、电流、转速等信号的采集和数值转换并回传到上位机,接收上位机的阀门开度控制信号实现供水优化;对电机等设备的过流、过压保护等等。
2.3上位中心控制站
作为现场所有单井的集中控制中心,担负着现场所有单井液位、压力、电压、电流及各井泵运行状态等信息的集中存储、管理,同时,作为集中控制中心,担负着现场所有单井泵的远程启停集中控制。另外,上位中心控制站PLC还担负着与总控室监控中心的实时数据交换。上位中心控制站PLC一方面根据水厂蓄水池液位进行远程自动启停井泵,根据总控室监控中心控制命令进行现场泵的启停。另一方面采用循环轮巡的方式,实时采集单井各现场数据。中心控制站PLC与下位井群PLC通过无线数传电台方式进行通讯。程序主要完成压力检测,供水泵的软启停及频率检测控制等功能。
2.4总控室中心总控系统
所有水源地单井泵的启停供水以及水厂输水泵的变频恒压输水均由总控室中心控制系统来控制,实现整个系统的合理调度、管理及监控。总控室中心控制单元选用带PROFIBUS-DP网卡(CP5611)接口的工控机WINCC为总主站,通过Profibus现场总线与二泵房的S7-314和井群中心的S7-314相连,通过二泵房的S7-314在每一个信息周期内收集变频器状态、阀门状态、压力、流量、水位等信息并且控制阀门,以配合控制各水泵的启停及转速,达到优化的目的。形成多级远程分布式控制系统。总控室中心控制系统主要实现功能为:实时数据采集、数据分析及处理、控制调节功能、画面显示、远程通信、人机对话、安全验证。监视画面包含有水源地所有泵站的运行情况、供水流程等,一屏显示一个画面,而且系统采集的各数据信息能在相应的动态画面上实时显示。每个画面都有画面切换控制按钮,可以方便的实现画面切换和各种操作。
整个系统对于各个控制系统单元的水压力、阀门开度、泵频率等多个基本控制回路采用PID控制,并在上位机使用模糊控制等智能调度算法,保证城市供水的稳定和高效。各主从站之间均通过标准的PROFIBUS-DP总线进行通讯,形成了多级远程分布式控制系统,保证了通讯的质量。
3 结束语
本文综合智能控制、计算机、网络信息和现场总线技术,根据供水网络的现状,通过对控制策略和现场总线技术的详细分析,设计并建立了远程区域网络智能监控调度系统。
本系统于2004年7月投入运行,目前,系统运行稳定可靠,稳定了水压,减少了供水管网的维修次数。长时间使用后,据反馈自动调节的效果与一个有经验的工程技术人员调节尺度基本相符,结合操作人员的实际经验,自动控制取得了显著成效。

1 引言
  项目原型基于小型制袋封切机开发外销出口型新机。原制袋宽度为600-1000mm。由于该机型送料胶辊惯量较小,送料电机采用130步进电机经过减速可实现传动,使用单片机进行位置控制。新机型制袋宽度提高到1500mm,送料胶辊惯量大幅增加,考虑到既能满足精度和速度的要求又有较大的瞬间转矩,送料系统改用伺服电机。由于用PLC开发周期较短而且抗干扰性、灵活性好,所以采用PLC+HMI作为控制系统。同时可实现中英文操作画面,满足设备出口的要求。

2 封切机机工艺
2.1 工艺结构
  封切机机由机身、上下切刀、变频传动机构、上下送料胶辊、伺服传动机构、放料架、放料直流电机、可调色标检测架、可移动操作箱、电控箱等单元构成,参见图1图片。



2.2 封切机工艺过程
  (1)空白定位运行方式:忽略色标信号,送料长度为设置袋长,送料完成后剪切并计袋数,循环动作直至袋数达到设定值,停机并延时至设置时间,以等待收料设备或操作人员收集袋料后,再次启动并循环工作。
  (2)色标定位运行方式:送料长度为设置袋长,在此期间的色标信号忽略,继续送出偏差长度的袋料,检测色标信号,定位于色标信号,定位完成后剪切并计袋数,循环动作直至袋数达到设定值,停机并延时至设置时间,等待收料设备或操作人员收集袋料后,再次启动并循环工作。若误检次数达到默认值,则停机并报警。
工作流程如图2所示。

3 FD1500型封切机机电系统设计
3.1 传动系统设计
  (1)切刀传动系统。切刀传动系统为交流变频器拖动三相异步电机,由面板电位器调速,PLC控制切刀启动与停止。传动轴上安装2只霍尔开关,分别检测切刀低位和送料/切刀高位。开关1:切刀低位信号,该信号为送料停止信号。若送料时检测到切刀低位信号则表示系统超速,需报警并停机。开关2:收到切刀低位信号后的ON信号为送料信号,是送料电机的启动信号;第二次ON信号为切刀高位信号,是高位停机时的停机信号。
  (2)送料传动系统。送料传动部分为交流伺服系统,采用同步带1:2减速传动。动力选用台达中惯量2KW伺服电机。具体型号:驱动器ASD-A2023M,电机ASMT20M250。
  (3)控制精度计算。通过以下计算得出单个脉冲对应的送料长度,即为控制精度。


系统要求0.2mm定位精度,现计算得出控制精度为0.0314mm,因机械定位误差不大于0.1mm,所以:定位精度+机械误差=0.1314mm<0.2mm,定位精度满足制袋机系统要求。
  (4)高脉冲输出频率计算。用户要求高送料速度为180m/min,由此可计算得出系统所要求的脉冲输出频率,以此为PLC选型的重要依据。


3.2 PLC与HMI选
  (1)输入信号统计。在色标传感器检标时,由于袋料上所印刷的色标不同,故亮通(Light On)、暗通(Dark On)均有可能。无论亮通或是暗通,在检测到色标信号时都需要PLC作出中断响应,所以需要把色标传感器的Light On与Dark On都接入PLC。色标信号:2点;低位信号:1点;高位/送料信号:1点,共4点DI信号。
  (2)输出信号统计。脉冲输出(Pulse+Sign):2点(Y0,Y1);切刀动作:1点;冲孔动作:1点;蜂鸣器:1点;共5点DO信号。
  (3)其它功能。可输出大于系统所要求频率(95541pps)的脉冲;2点外部中断回应。
基于以上考虑,PLC选择DVP-20EH00T。具体功能参数为:200Kpps脉冲输出,8点外部中断回应。同时与HMI通信可使用RS485连接,抗干扰能力优于一般的RS232通信方式。HMI选用台达DOP-A57GSTD高性价比触摸屏,通过图3可见触摸屏操作更为直观方便。大部分操作在HMI上进行,从而可减少外部按钮开关、指示灯的使用,只保留急停按钮等必要设备。

  机电一体化封切机电系统原理如图4所示。






3.3 PLC程序设计要点
  主体程序使用逻辑顺序控制,除此之外的编程重点如下:
  (1)使用浮点运算。为减小计算误差,如袋长脉冲数、偏差脉冲数等重要数据的计算,均使用浮点运算。经过验证,计算误差小于0.001mm。
  (2)袋长脉冲送料使用DPLSR可调加减速脉冲输出指令,反复修改并验证启动频率与加减速时间设置的合理性。完成袋长脉冲之后,使能色标检测,以忽略袋料中间部分的色标误检。检测到色标时,响应外部中断,执行中断程序置位M1334以停止CH0脉冲输出。可设置亮通(Light On)中断或是暗通(Dark On)中断。精简中断程序的内容,尽量减少中断对扫描周期的影响。

4 结束语
  FD1500型制袋封切机的性能虽已达到初的设计目标(在袋长为1000mm时,制袋速度:60个/分),但PLC脉冲输出频率尚有较大余量可用。使用标准100mm直径胶辊时,可改变伺服电机电子齿轮比,在保证控制精度的前提下,更进一步加大PLC脉冲输出频率的余量。以上有利因素均为FD1500型制袋机提高加工速度奠定了良好的基础。二次开发时,加大减速比至1:3,将突破伺服负载/电机转子惯量比过大这一限速瓶颈,终提高生产效率。


展开全文
优质商家推荐 拨打电话