西门子模块6ES7214-2AD23-0XB8库存现货
一、前 言
中科院等离子体物理研究所国家九五重点工程HT-7U核聚变装置中的微波功率速调管能量来源于阴极高压直流电源[1]。该系统需要采集和控制各种等级的高压大电流信号和接触器,同时由于高压场合特殊性更需要可靠安全的操作控制系统,因此需要设计一个多点信号监控方便,自动化水平高,抗干扰能力强,人机界面操作合理的控制系统。以可编程控制器PLC为处理核心的微机控制方式已经在常规电压等级场合实现了海量继电器控制系统,其抗干扰能力强,I/O信号处理组态化等优点使得建造控制系统变得方便快捷,安全可靠。选配相应的上位机开发软件如VC或组态控制软件做友好的人机监控界面,就更加变得通用方便,本文就实际研制的高压直流电源控制系统介绍了相关的计算机控制系统的实际设计和应用过程,不仅具备了PLC控制海量继电器的优点,而且在处理模拟量反馈控制方面和上下位机实时通讯也进行了独特的处理。
二、控制系统硬件设计
35KV/80A的脉冲高压调制电源控制系统是一个具备高压大电流测量,继电器控制各类开关接触器,模拟量反馈输出控制各类执行器的系统,控制系统必须在离高压设备相对安全区域内实时监控高压设备,并且要处理并避免控制电缆受强磁场干扰以保证控制精度和可靠性。高压直流制电源控制系统(见图1) 由96点的开关量和32点模拟量控制构成,控制对象为直流高压35KV/80A反馈输出,需要通过霍尔传感器和分压器及隔离放大器采样各类等级的电压电流信号和外部中断控制信号,控制执行器主要由各类高低电压接触器,步进电机和可控硅触发板构成。
图1 高压直流电源控制系统
根据高压直流电源的监控信号进行处理和归类。表1显示了系统部分所需监控的模数参数,主要包括接触器和断路器的开关量控制和状态测量,可控硅的模拟量控制及系统模拟电量和其他各类外部触发信号的采集。
表1 控制系统部分参数说明
选用研华工控机和组态王(KingView)构成上位机来监控下位机状态和编制人机操作界面(见图2),以MPI通信电缆串行方式与下位机通讯,速率187.5Kb。通过中间寄存器对下位机进行寻址读写以完成上下位机实时通讯。
图2 上下位机通讯方式
下位机采用了西门子S7300系列PLC产品,硬件配置具体包括西门子CPU314,24V直流电源,16路DI数字量输入模块,16路DO数字量输出模块,4路AO模拟量输出模块及6路AI/AO模拟量输入/输出模块。控制系统的测量采集和控制传感器主要包括高压输出信号进行线性降压并隔离,霍尔元件和隔离放大器等传感器对信号进行预处理。24V电平控制设计固态继电器和晶体管驱动各类开关,模拟量可控硅触发板设计触发高压整流设备。图3描述了电源控制系统的基本硬件配置。
图3 高压直流电源控制系统的基本硬件配置
同时由于高压设备的特殊环境,下位机现场的电缆合理布线是避免控制电缆在高压区域受强磁场干扰以保证控制精度和可靠性的关键。系统对开关量的测控采用固态继电器做中间环节二次触发和接收现场接触器的信号和状态,一个具备高压大电流测量,继电器控制各类开关接触器,霍尔元件传感器感应采集模拟量反馈信号,控制电缆采用屏蔽双绞线穿管走线,保证了控制系统的可靠性。
三、控制系统软件设计
下位机PLC根据系统的控制逻辑进行编程设计,西门子STEP7组态软件提供梯形图,语句表和方框图的编程方式,采用块编辑方式代替传统的编辑方式,用户可以根据实际需要选用或编辑相应的组织块,功能块和数据块,调用实时性强,程序优化余地大,微秒级指令执行速度,24K内置RAM和4M的外接存储卡供用户零活编译应用程序。图4显示了用户部分应用程序逻辑并采用梯形图(见图5)实现。
图4 控制系统部分应用程序
工控机配置组态王(KingView)进行用户人机通讯和操作界面设计,组态王(KingView) 是随着对工业自动化的要求越来越高,以及大量控制设备和过程监控装置之间的通讯的需要,为实现监控和数据采集系统而开发的组态软件。运行在bbbbbbs 9X/NT上的一种组态软件。用户可以方便地构造适应自己需要的数据采集控制系统,用户编制的人机界面友好而功能全面,具备实时操作界面,实时曲线和历史曲线显示,并具备报警记录和打印功能,提高了系统操作自动化水平。本系统采用的上位机通过组态王和西门子PLC的协议,以MPI通信电缆串行方式与下位机通讯,速率187.5Kb完全满足了用户要求。通过中间寄存器对下位机进行寻址读写以完成上下位机实时通讯。本控制系统采用了输入/输出寄存器直接寻址和数据块寄存器寻址,编程直观方便,易于掌握。
图5 控制系统部分梯型图
四、结 论
本PLC组态控制系统在高压直流电源实际使用中实现了传统的电器控制向模块化﹑数字化的微机自动控制转变,简化了诸多操作结构,大大减少了人为误差,提高了操作效率,增强了系统功能和可靠性,其结构紧凑,扩展性强,解决了长期以来高功率设备控制系统自动化程度不高的难题。亦可为其它高低压电气控制场合提供一个参考模式。
1 引言
电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
电动机常见的故障可分为对称故障和不对称故障两大类。对称故障包括:过载、堵转和三相短路等,这类故障对电动机的损害主要是热效应,使绕组发热甚至损坏,其主要特征是电流幅值发生显著变化;不对称故障包括:断相、逆相、相间短路、匝间短路等,这类故障是电动机运行中常见的一类故障。不对称故障对电动机的损害不仅仅是引发发热,更重要的是不对称引起的负序效应能造成电动机的严重损坏。因而,对大型电动机进行综合保护非常重要。
2 基于PLC的电动机综合保护
对电动机的保护可以分为以下几类:
在电动机发生故障时,为了保护电动机,减轻故障的损坏程度,继电保护装置的快速性和可靠性十分重要。在单机容量日益增大的情况下,电机的额定电流可达数千甚至几万安,这就给电动机的继电保护提出了更高的要求。传统的继电保护装置已经无法满足要求,因此微机保护应运而生。
PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、设计施工周期短、调试修改方便、而且体积小、功耗低、使用维护方便。因此,本文研究了基于可编程控制器(PLC)的电动机综合监控和保护系统的方法。
3 系统硬件设计
3.1 系统的总体结构
基于可编程控制器(PLC)的电动机综合监控和保护系统的总体结构如图1所示。
3.2 PLC机型选择及扩展
选择PLC机型应考虑两个问题:
(1) PLC的容量应为多大?
(2) 选择什么公司的PLC及外设。在本系统中,包含以下输入输出点,见附表,本系统共包括12路开关量,7路模拟量。
SIMATIC S7-200系列PLC是由西门子公司生产的小型PLC,其特点是:SIMATIC S7-200系列PLC适用于各行各业,各种场合中的检测,监测及控制的自动化,S7-200系列的强大功能使得其无论在独立运行中,或相连成网络皆能实现复杂控制功能,因此S7-200系列具有极高的性能/价格比。
S7-200 CPU 224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,大扩展至168路数字量I/O点或35路模拟量I/O点;13K字节程序和数据存储空间;6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器;1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力;I/O端子排可以很容易地整体拆卸,是具有较强控制能力的控制器。根据系统的实际情况,结合以上特点,SIMATIC S7-200 CPU 224完全可以作为本系统的主机。
CPU224可扩展7个模块,而其本身具有14输入/10输出共24点数字量,因此已无须数字量扩展模块。但由于有7路模拟量输入,故需选择模拟量输入模块。S7-200系列提供了EM231,EM232,EM235等模拟量扩展模块。根据以上技术数据,选择两个EM231作为模拟量输入模块,这样共可以扩展4×2=8路模拟量输入。
4 系统软件设计
4.1 主程序
程序开始,从输入单元检测输入量,首先判断KM是否闭合,如果闭合,说明电动机已经处于运行状态,此时应无法按下启动按钮,若KM未曾闭合,则说明电动机处于停机状态,可以按启动按钮。接着判断启动按钮是否按下,若是,则继续下面的程序,若否,则重新检测。如果按钮已经按下,则检测电动机是否启动,若是,则继续下面的程序,若否,则转入欠压保护子程序,若是电动机已经启动,则判断起动是否成功,若是,则继续下面的程序,若否,则转入起动保护。如果电动机已经正常起动,则绿灯亮。接着判断停止按钮是否按下,若否,则继续下面的程序,若是,则程序直接结束,开始下一次扫描。
如果停止按钮并未按下,即电动机仍然在运行中,则进行运行过程中的故障判断,首先检测是否发生短路故障,方法是:检测三相电流,再判断Imax是否大于整定值,若是则跳转至保护动作子程序段,电动机起动短路保护,警报响,并且短路故障指示灯亮。若否,则继续下面的程序。接着判断是否发生断相故障,方法是:检测三相电流,判断是否有某相电流为零,或者检测Umn,判断是否不为零,如果其中之一满足,则跳转至保护动作子程序段,电动机起动断相保护,警报响,并且断相故障指示灯亮。若否,则继续下面的程序。接着判断是否发生欠压故障,方法参见欠压保护子程序说明。接着判断是否发生接地故障,方法是:检测I0,若大于整定值则跳转至保护动作子程序段,电动机起动接地保护,警报响,并且接地故障指示灯亮。接着判断是否发生过负荷故障,方法是:检测三相电流,若到达整定时限后,电流仍大于整定值,则跳转至保护动作子程序段,电动机起动过负荷保护,警报响,并且过负荷故障指示灯亮。若判断未发生过负荷故障,则程序完成一次扫描,再次从条开始,进行第二次扫描,所以结束是指一个循环的结束,并不是整个程序的结束。
4.2 欠压保护子程序
在该程序段中,采集A相和C相的电压量,求出其平均值,再与整定值相比较,若小于整定值,则跳转至保护动作子程序段,电动机起动欠压保护,警报响,并且欠压故障指示灯亮。若未发生欠压故障,则直接结束本次循环。
4.3 起动时间过长保护子程序
在该程序段中,采集三相电流量,若发现在起动过程中,电流大于整定值,或在整定时间到达后,电流仍大于另一整定值,则跳转至保护动作子程序段,起动时间过长保护动作,警报响,并且起动故障指示灯亮。
5 结束语
通过本系统设计、试验与运行,得到如下结论:
(1) 利用PLC进行电动机综合保护硬件简单可靠。
(2) 可以采用梯形图语言进行编程,简单易行。
(3) 系统运行可靠,便于检修维护。
(4) 由于采用集成综合设计,系统体积小、功耗低、使用操作方便。