浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7214-2AS23-0XB8产品型号

西门子6ES7214-2AS23-0XB8产品型号

气燃烧发电是随着沼气综合利用的不断发展而出现的一项沼气利用技术,是集环保和节能于一体的能源综合利用新技术,它利用工业、农业或城镇生活中的大量有机废弃物(例如:酒糟液、禽畜粪、城市垃圾和污水等)经厌氧发酵处理产生的沼气,驱动沼气发电机组发电,并可充分利用发电机组的余热用于沼气生产,使综合热效率达80%左右,大大高于一般 30~40% 的发电效率,用户的经济效益显著。

  沼气发电中采用以和利时公司LK系列可编程控制器(PLC)为主的自动化控制系统,冗余热备CPU配置,大大提高了沼气发电运行过程的稳定性、可靠性和安全性,同时使系统维护更加方便快捷,该系统已在北京某沼气发电项目应用,至今运行情况良好,得到了用户的好评。

1、工艺流程介绍

  垃圾填埋沼气发电系统分为收集系统、抽气系统、净化系统、发电系统四大部分。


图1 沼气发电工艺流程图

  收集系统由井管、井头、管网及冷凝水收集器等组成。

  抽气系统采用罗茨鼓风机真空抽气将填埋气以负压状态由集气井中抽出。其抽气量可由阀门加以调控,抽气压力由罗茨鼓风机调节,以获得稳定的产气量。

  净化系统包括冷凝水分离器及尘埃过滤器等,前者主要是去除沼气中的水份,后者则主要去除沼气中粒状污染物,以避免其进入发电系统中造成发电机的磨损。初步净化后的气体引至加压风机,压力提升后进入后冷却器,经过凝聚过滤器的进一步过滤,过滤后的气体再经过两个过滤器分两路进入燃气机输出电能。发电系统将发出的电能送至电网。

2、自动化控制系统设计

  沼气发电自动化控制系统实现对沼气处理系统和沼气发电系统过程的工艺参数、电气参数和设备运行状态进行监测、控制、联锁和报警以及报表打印,通过使用一系列通讯链,完成整个工艺流程所必需的数据采集、数据通讯、顺序控制、时间控制、回路调节及上位监视和管理等功能。


图2 自动化控制系统示意图

  整个系统由1个中央控制室、2个现场PLC控制站(设于沼气处理系统、沼气发电系统)组成。现场PLC控制站,由HOLLiAS LK系列可编程序控制器(PLC)系统及检测仪表组成,对沼气发电各过程进行分散控制;再由中央控制室上位机实行集中监控管理。中央控制室上位机与PLC控制站之间的数据通讯采用高速的、实时的工业以太网,通讯速率为100Mbps,传输介质为屏蔽双绞线。

  现场的PLC控制站为双机热备冗余,PLC采集现场信号,然后通过工业以太网与控制监控计算机进行数据通信,控制方式采用“全开放全分布”方式。

  控制系统分为三级管理,包括管理级(中心控制室)、控制级(PLC控制站)及现场级。

3、系统功能

  ·显示功能
  具有多窗口的PID图、报警画面、趋势图、指导画面、控制画面、参数修改画面、故障诊断画面、动态画面等各种监视画面。
  ·安全功能
  分别设定操作员和系统员的进入口令。在运行环境下,屏蔽bbbbbbs所有热键,从而锁定系统自由进出。系统上电后自动恢复运行状态。
  ·历史数据管理
  对所有采集数据任意设定存取间隙和存取方式。
  ·打印报表
  按用户定义的报表格式进行定时、报警和随机打印。
  ·事件记录
  事件和内部时钟可按时间顺序区分和管理,并可及时显示和打印。
  ·数据库接口与数据通讯
  具备开放性的实时数据可接受任何任务的访问并与其交换数据。系统具备复制和分发功能,将信息分送给其它的通用数据库应用程序,同时支持SQL、ODBC或OLE DB的应用程序。所有数据可用符号代表,如:VALVE、MOTOR等,需要时可对变量的每次改变进行监视和处理。
  ·控制操作功能

  可按组态通过鼠标指定画面上的对象进行开关或增减操作。回路响应时间不大于2秒。

  控制系统采用程控、远控、就地控制相结合的方式,对于电动门、气动门、泵、风机等控制对象除了在控制室进行远方控制外,保留就地操作手段。

  对于程序控制系统具有自动、半自动、步操、键操及就地手操五种操作方式。在手动方式下,操作员启停电动机、开关阀门及其它设备时,LCD画面提供操作指导。

  现场设备故障,影响程控前进时,在满足相关约束下,运行人员干预可进行跳步操作。

  设备处于就地操作方式时,上位机操作无效。

高速发展的中国经济对能源和环保提出了越来越高的要求,利用秸秆燃烧发电是充分利用能源,保护生态环境的有效途径之一。在秸秆发电厂中采用以和利时公司HOLLiAS LK系列PLC为主的自动化上料系统,实现了对热电厂秸秆上料系统工艺过程及生产设备的监测与自动控制。该系统性能稳定、功能齐全、、扩展灵活,目前已成功应用于多个热电厂秸秆上料系统现场。

  1、工艺流程介绍

  秸秆发电厂采用秸秆为原料,将其打碎并包装成捆,上料系统将深加工后的秸秆燃料通过散包机进行二次打碎,并将二次打碎后的燃料分散成碎料送至皮带机,皮带将分散后的秸秆碎料送入蒸汽炉的加热系统内充分燃烧,使蒸汽炉循环水转变为水蒸气推动汽轮机旋转,再由动能转化为电能。整个上料系统包括散包机的原料分散和皮带机的物料输送两部分。

  ·散包机原料分散系统

  散包机由压料辊、导料辊、输送辊、一次侧散包机、二次侧散包机几部分组成。

  秸秆燃料进入散包机后,先由压料辊将其进行二次粉碎,粉碎后的燃料通过导料辊进入输送辊。后由输送辊送入一次侧散包机进行分散作业,分散后再次经由输送辊送至二次侧散包机进行二次分散作业。

  ·皮带机物料输送系统

  经二次分散作业后的秸秆燃料由散包机进入皮带机内,燃料由0#皮带机→1#皮带机→2#皮带机→3#皮带机,后由3#皮带机将其送入加热炉的炉膛内进行燃烧。

  2、PLC控制系统设计

  秸秆发电厂控制系统分为生产管理级、现场控制级和就地控制级三层结构,利用高速工业以太网(TCP/IP协议)进行连接以实现信息和资源的共享,其优先级分别为就地控制级高,其次为现场控制级,低为生产管理级。由LK系列PLC组成的现场控制站位于该系统的的现场控制级,并接入电厂原有的DCS系统中。

自动化控制系统示意图

  ·生产管理级:位于蒸汽炉、汽轮机联产系统控制室内,由原有DCS监控系统构成。各监控计算机对主要工艺设备的运行状态和生产过程的工艺参数进行数据采集及显示。上料输送系统的PLC控制站通过串口通讯,与DCS系统的通讯服务器连接并由该服务器将PLC控制站数据传入DCS的I/O服务器内,I/O服务器上运行的监控软件将该数据进行显示并下发控制命令。

  ·现场控制级:即PLC控制级,由LK大型PLC构成,采用CPU双机热备的冗余结构,使整个系统运行稳定可靠。其功能是读取上料系统中散包机和各皮带机的运行参数,并根据生产管理系统下发的指令来控制系统中各设备的运行。采集数据主要包括散包机各组成部分变频器的运行状态、反馈电流以及故障信号;皮带机的运行状态、反馈电流及各皮带机的在线检测开关信号。现场控制级接受生产管理级的调度,但并不依赖于生产管理级而运行,若监控计算机出现故障或并没有投入使用亦或通信网络出现故障,该控制站仍能正常工作,对整个工艺过程没有影响。

  ·就地控制级:将设备切换到现场手动状态,以实现设备的就地手动控制。就地手动控制具有高的优先级,主要应用在设备调试、维护阶段。

  秸秆发电厂上料控制系统采集原料分散系统中负责控制压料辊、导料辊、送料辊、一次侧散包辊和二次侧散包辊等设备的变频器状态信号及数据信号并对以上设备发送控制信号;实时读取并控制物料输送系统中各皮带机的工作状态,包括各皮带机组的A/B两条皮带的启停控制及防撕裂、打滑、堵料、跑偏、拉绳等在线检测开关。

  3、系统功能

  秸秆发电厂上料输送系统通过将PLC控制站接入原有DCS系统实现了对工艺流程的监测、控制以及数据的处理、存储、分析以及报表打印等任务。
  ·工艺流程显示:显示工艺流程的同时将所有的设备状态、工艺参数以及各控制回路的详细参数等进行了有针对性的实时采集与显示。
  ·设定值显示:包括所有必需参数的设定值、控制方式、调节参数以及其它联锁值、报警值等。
  ·报警显示:包括实时报警、历史报警。系统可在线诊断各类故障,查找故障部位并报警。包括工艺数据报警、设备故障报警、系统故障报警,根据不同的报警信息提供不同的报警画面,在故障确认后可实现报警解除。
  ·报表显示和打印:采用了DDE技术,从而使用户能够直接使用Excel编制报表。借助Excel的强大功能,用户可以随心所欲地编制各种各样的报表。可以是实时数据的报表,也可以是历史数据的报表。
  ·历史数据的存储与检索:对重要的数据进行在线存储,数据的存储时间长为10年。可以通过历史报表或者历史趋势曲线的方式来检索历史数据。
  ·控制:在监控计算机上可以进行远程手动控制,使用鼠标、键盘控制PLC来启动和停止现场的设备。
  ·操作记录:对重要设备的操作、重要参数的修改均会自动记录,包括登录的操作员、对设备进行的操作、时间以及修改前的参数值、修改后的参数等,以利于管理及事故分析。
  ·系统的安全管理:系统设置为多用户、多区域方式,各类用户均有自己的用户名和密码,对应着不同的安全级别,决定了操作员可观察的范围、可使用的功能、可修改的参数等。多可以设置为8级用户、8级区域。

摘 要:主要介绍了PLC和触摸屏在低封炉控制系统的应用,着重介绍了PLC控制系统的硬件配置,以及软件设计思想和程序结构,并介绍了利用GP577R触摸屏实现上位监控的功能。

关键词:低封炉 PLC 触摸屏

1 引言

  低封炉是CRT生产过程中重要环节之一,主要用于通过焙烧使屏锥封接。它一般包括炉体、驱动装置、置换装置及炉上栏杆踏台等几部分。炉体包括炉本体、网带导轨、RC风机以及加热器等几部分。炉本体由优质碳素钢及不锈钢组成,内填保温棉,循环风道由不锈钢内腔板组成。RC风机起搅拌作用,使炉内温度均匀性好。加热器由优质电热丝和不锈钢框架组成,起到恒温作用。驱动部设有自动张紧装置及网带跑偏调节机构,主要是通过变频器实现网带速度连续可调,使工件在炉体内匀速移动。

  下面以BMCC5L低封炉延长为例说明其控制系统部分的实现,它主要包括低压受电柜,3个加热柜和温控柜。其工作原理是:低压受电柜提供炉上风机、热丝等电源,通过温控柜内的控温器设定温度,用控温器的输出控制加热柜中的电力调整器,调整器的输出控制加热器,调整炉体温度, 达到工艺要求温度。在温度控制柜内有一套PLC系统和触摸屏,实现整个系统自动开机,自动关机,故障随时报警等功能,达到实时监控的作用。本系统主要是完成14个加热区的加热丝、RC风机、排风机、冷风机以及后8个区冷却阀的控制。

2 控制系统硬件配置


图1 系统硬件配置框图

  本系统共有260点:数字量输入162点,数字量输出98点。控制系统采用OMRON公司的C200HG-CPU43,属于中型PLC,内有RS232通讯口,它能满足较高性能的要求。基板多10个槽,这样每个槽26点,需要使用32点的模块,所以输入选用高密集型的C200H-ID216,输出选用组2高密度晶体管输出单元C200H-OD215,由此可知6个输入模块,4个输出模块。再者在该系统中增加一块串性通信板C200HW-COM06,通过RS232口与触摸屏通讯,达到人机交换。在监控方面采用的是digital公司的GP577R-TC41-24VP,实现手动控制和监控报警。其系统硬件配置如下:

  温控柜面板上的控温器控制低封炉炉温,具有PID调节功能,与加热柜内的SCR电力调整器配合使用,可实现加热器的电压在0~范围内调节,根据设定温度与当前温度的差值,自动调节输出到加热器上的电压值,从而使炉内温度获得jingque控制。

  加热柜为低封炉的加热器提供电源,内装有电力调整器,由温度控制柜内的温控来自动调节其输出功率,达到控温的目的。该部分别控制新增1~14区加热。柜中,装有空气开关为新增1~14区电力调整器SCR提供电源。SCR调整器上装有能够显示各相电压,电流大小,输出功率大小等的显示面板。此面板还可以显示出SCR调整器的异常状态。

  风机动力部分为低封炉的RC风机,以及排风机、冷风机提供电源,其电源通断也由空气开关控制。通过交流接触器在给定电流范围内输出到各风机,控制其运行与停止。

3 控制系统软件设计



图2 温控柜各控制按钮

  当低封炉总汇流排给电后,受电柜面板上电源指示灯亮,再依次给各加热柜和温控柜上电,相对应的指示灯亮。本系统主要是根据温控柜各按钮如图2,通过手动或自动模式完成炉上各区热丝、风机和冷却阀的自动启动和关闭,以及实时监控其状态,是否有异常情况发生。系统控制流程如图3所示。


图3 系统控制流程图

  为了节约篇幅在此不再给出梯形图,下面对流程图给予解释。PLC上电后,首先判定各风机是否全开,只有风机全开才能使加热丝工作。进行模式选择,主要有自动和手动两种状态。在自动模式,按动面板上自动启动按钮,自动灯亮,这样风机自动开移位寄存器运行,各区风机自动逐次开。当所有风机全部工作后,加热块1自动启动,这样1~5区加热移位寄存器运行,使得1~5区加热丝开始工作。随后加热块2自动启动,6~14区加热移位寄存器运行,使得6~14区加热丝开始工作。从而根据工艺要求各区设定温度进行PID自动调节,直至满足要求。当需要停止生产时,则要使热丝和风机停止工作。这样按动控制柜上自动停止按钮,这样各区热丝逐次停止工作。此时进行自动停计时,时间到自动停止各区风机。

  在手动模式下,首先按动面板上风机启动按钮,使得各区风机逐次开。当所有风机全部正常工作后,再按动面板上的加热块1启动按钮,1~5区热丝开始工作。同样按动加热块2启动按钮,6~14区热丝也开始工作。系统稳定后,工件可以进行陪烧。当需要停止时,则要按动加热块1停止按钮,1~5区热丝开始停止。按动加热块2停止按钮,6~14区热丝也开始停止加热。当热丝全部停下来时,按动风机停止按钮,则各区风机依次停止运转。直到下一次启动。

  如果在生产过程中工件出现异常情况,按动非常停止按钮,网带停止转动,进行紧急处理。并且任何区热丝或风机出现异常情况,在控制柜上或触摸屏上都有对应的显示,及其相应的声光报警,通知操作人员。

4 监控系统说明

  本系统使用DIGITAL公司GP577R-TC41-24VP型触摸屏作为上位监控,可以实时的显示现场信号、实时报警并对控制点进行控制。监控系统由5个窗口组成:系统主画面窗口、加热区RC风机运转画面、加热区热丝运转画面、冷却阀运转画面、设备故障履历画面。五个窗口之间建立了链接,通过窗口中的按钮进行切换,并与PLC建立变量之间连接,通过触摸屏实时显示相应的状态信息,构成系统整体监控。

  现以系统主画面为例,说明监控画面的功能。系统主画面分为两个区域:灯部件区域和开关部件区域。灯部件区域在画面的左部,使用PLC的I/O点作为监控显示,当这些监控点状态为ON时,显示绿色,当为OFF时显示白色。从而表明原柜和新柜以及网带当前状态是在自动状态还是收动状态,是运行还是停止,是正常还是异常。开关部件区域主要是作为选择按钮,当触摸这些按钮是就会切换到相关的页。异常发生按钮主要是监控系统是否有异常状况发生,如有显示红色,触摸可调转到故障画面,显示哪个设备出现何种故障。触摸冷却阀按钮,就会跳转到冷却阀运转画面,显示各冷却阀的开闭状态,是否故障。触摸风机手动按钮,切换到加热区RC风机运转画面,显示各区风机是否在运行状态,有无异常情况发生,对应区的风机是开还是关。触摸加热手动按钮,切换到加热区热丝运转画面,该画面主要是显示各区热丝是否在运行状态,有无异常情况发生,对应区的热丝是加热还是停止。触摸设备故障履历按钮,就会显示何时发生报警,何时恢复,是否确认。并且在五个窗口中都可以互相切换,方便监控。

5 结束语

  本系统已投入实际运行,性能稳定可靠,较好满足工艺要求。PLC作为系统的主控制器在安全可靠性以及网络互连性方面有其独特的优越性,触摸屏人机界面系统在灵活性和友好性有其出色的体现,从而是自动化程度得到进一步提高。但本系统在与其他控制系统通讯方面还存在局限性,通过电缆信号线将原柜和新柜的主要信号相连接信号交换有限,也不能实现与入口控制系统、出口控制系统、置换控制系统进行完全通信,不便于操作人员获得充分信息。解决方法之一可以在各自的PLC模块中增加bbbb单元,实现各PLC之间通讯,更好的完成整个系统的控制。


展开全文
优质商家推荐 拨打电话