西门子模块6ES7212-1BB23-0XB8品质好货
1 前 言
工业的高速发展对控制系统的依赖性越来越强。分散型控制系统(DCS)、可编程控制器(PLC)、现场总线控制系统(FCS)、工业控制机(IPC)以及各种测量控制仪表已是构成工业自动化的主要硬件设施。随着微电子技术的发展和控制系统集成化程度的提高,大规模集成芯片内单位面积的元件数越来越多,所传递的信号电流也越来越小,系统的供电电压也越来越低,现已降到5V、3V乃至1.8V。因此,芯片对外界的噪声也越趋敏感,所以显示出来的抗干扰能力也就很低。再则,相对于其它的电子信息系统,控制系统不但系统复杂,设备多,输入/输出(I/O)端口多,特别是外部的连接电缆又多又长,这类似于拾取噪声的高效天线,给噪声的耦合提供了充分的条件,使得各种噪声容易侵入控制系统。
PLC具有编程简单、通用性好、功能强、易于扩展等优点,特别是采用了高集成度的微电子器件,具有很高的可靠性,能较强的适应恶劣的工业环境,已被广泛应用于工业控制领域中。现在工业生产线控制系统中所使用的PLC,主要是集中安装在主控室,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中,很容易被周围干扰源干扰而引起控制系统产生误动作,影响系统的正常工作,因此必须重视系统的抗干扰设计。为防止干扰,可以采用硬件和软件相结合的抗干扰方法。
2 PLC系统的基本组成结构
可编程控制器硬件系统由PLC、功能I/O单元和外部设备组成,如图1所示。其中PLC由CPU、存储器、基本I/O模块、I/O扩展接口、外设接口和电源等部分组成,各部分之间由内部系统总线连接。
图1 PLC系统的基本组成结构
3 影响PLC控制系统稳定的干扰类型
3.1 空间辐射干扰
空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰。电气设备、电子设备的高密度使用,使空间电磁波污染越来越严重,这些干扰源产生的辐射波频率范围广,且无规律。空间辐射干扰以电磁感应的方式通过检测系统的壳体、导线等形成接收电路,造成对系统的干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。
3.2 电源的干扰
PLC系统一般由工业用电网络供电。工业系统中的某些大设备的启动、停机等,可能引起电源过压、欠压、浪涌、下陷及产生尖峰干扰,这些电压噪声均会通过电源内阻耦合到PLC系统的电路,给系统造成极大的危害。
3.3 来自信号传输线上的干扰
除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。
3.4 数字电路引起的干扰
数字集成电路引出的直流电流虽然只有mA级,但是当电路处在高速开关时,就会形成较大的干扰。例如,TTL门电路在导通状态下从直流电源引出5mA左右的电流,截至状态下则为lmA,在5ns的时间内其电流变化为4mA,如果在配电线上具有0.5μH的电感,当这个门电路改变状态时,配电线上产生的噪声电压为:
U=L×di/dt=0.5×10-6×4×10-3 /5×10-9=0.4V
如果把这个数值乘上典型系统的大量门的数值,虽然这种门电路的供电电压仅为5V,但所引起的干扰噪声将是非常严重的。
在处理脉冲数字电路时,对脉冲中包含的频谱应有一个粗略概念,如果脉冲上升时间t已知,可用近似公式求出其等效高频率:fmax=1/2πt1.4 PLC系统内部产生的干扰。
4 PLC系统中的抗干扰设计
4.1接地抗干扰设计
接地在消除干扰上起很大的作用,良好的接地是保证PLC可靠工作的重要条件之一,可以避免偶然发生的电压冲击危害。为了抑制附加在电源及输入、输出端的干扰,应给PLC接以专用地线,接地线与动力设备(如电动机)的接地点应分开,若达不到此要求,则可与其它设备公共接地,严禁与其它设备串联接地。接地电阻要小于5Ω,接地线要粗,面积要大于2平方毫米,而且接地点好靠近PLC装置,其间的距离要小于50米,接地线应避开强电回路,若无法避开时,应垂直相交,缩短平行走线的长度。
4.2 电源部分的抗干扰设计
电源波动造成的电压畸变或毛刺,将对PLC及I/O模块产生不良影响。据统计分析,PLC系统的干扰中有70%是从电源耦合进来的。为了抑制干扰, PLC供电系统可采用如下方式,控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。当某一部分电源出了故障时,而不会影响其他部分,如输入、输出供电中断时,控制器仍能继续供电,提高了系统的可靠性
1、前言
1250离心机是立式刮刀卸料自动过滤离心机,主要用于固相为颗粒状 悬浮物料 固液相分离,也可用于纤维状物料 固液相分离。 矿物、环保、医药、化工等行业中广泛应用。目前多数离心机仍由继电器控制,采用有级调速,离心机工作转速调节单一、设备故障率较高,生产效率低下。为克服这些问题,我们对制药厂1250离心机电控系统进行技术改造,采用PLC控制和变频器调速,该系统自动化程度高、稳定性好,运行可靠,现已成功应用于多家制药厂。
2、系统原理
离心机工作原理是将待分离 物料经进料管送入高速旋转 离心机转鼓内, 离心机力场 作用下,物料 滤布(滤网)实现过滤,液相经出液管排出,固相则截留 转鼓内,待转鼓内滤饼达到机器规定 装料量,停止装料,对滤饼进行洗涤,同时将洗涤液滤出,达到分离要求后,离心机低速运转,刮刀装置动作,将滤饼刮下,完成一次工作循环。图1为1250离心机结构图。
图1 1250离心机结构图。
离心机离心工艺过程:1)进料:当变频器速度达到20Hz时,首先打开进料阀、料层检测阀,当检测到料层满时,关闭进料阀并延时10S,料层满信号消失再次打开进料阀连续执行上述动作2次。2)离心:当第三次料满信号产生时,关闭进料阀变频器升速至50Hz进行高速分离,离心时间可由触摸屏设置,时间到后变频器降速至40Hz。3)清洗甩干:打开清洗阀进行清洗,清洗时间、暂停时间和清洗次数 所分离药物品种由触摸屏设置。清洗工艺完成后进入甩干过程,变频器升至50Hz,甩干时间由触摸屏设置。时间到后进入卸料状态。4)卸料: 甩干后料层过厚,刮刀采用分段定时旋转卸料,即刮刀旋转(时间可设置)→ 停2秒 → 刮刀下降(下降高度可设置),重复上述动作,直至后一次刮刀下降至下限感器动作,然后上升到顶部至上限位停止动作。
3、系统设计
3.1 硬件设计
系统采用三菱公司FX2N-40MR型可编程序控制器(PLC)控制,当程序设定好后可进行无人看护 自动化操作或选择手动控制,并对加料、初过滤、洗涤、精过滤、卸料等进行全过程监护。离心机调速采用PLC+D/A模块、变频器进行调速, 电压(0-10V)来控制变频器 频率,变频器采用德国伦茨公司EVF系列变频器,功率22KW。触摸屏采用EASYVIEW 5.7英寸4灰度触摸屏。
PLC共有20个输入点,15个输出点。图2为PLC外部硬件配置图。控制系统主回路及变频器外部接线如图3所示。
图2 PLC外部硬件配置图
图3 控制系统主回路及变频器外部接线图
其中为消抖防信号干扰,输入点X11、X12、X13、X14、X15、X16、X17、X20分别经4个隔离栅接入PLC输入。
3.2 软件设计
编程采用编程软件MELSECMEDOC软件包,它基于个人计算机,适用于三菱公司PLC 用户程序编制和监控, SC-09RS232/RS422接口与PLC编程口相连,可用梯形图或指令编程。本系统PLC梯形图程序 控制要求采用STL和SET步进指令编制。主要有初始化设定,进料、分离、清洗、甩干控制程序、自动控制程序等。程序设计中采取 安全保护有:转速检测,过振动保护,开盖保护,电机过载过热保护,刮刀旋转,升降机械电气双重控制,刮刀与转鼓 联动锁定。程序流程图4所示。
图4 程序流程图
4、结束语
该系统 多家药厂现场运行,结果令人满意各项指标满足现场技术要求。系统启动平稳,分离因数可调,操作简洁方便,自改造投入运行以来,运行稳定调速方便,免维护,为现场操作人员创造了一个高效率 工作环境,实现了1250离心机较为先进 控制技术。
3.2 控制方面
(1)PLC自停故障
该机在试运行时,时常出现停机现象。究其原因主要是环境温度太高,导致PLC自动保护系统动作所致。工业陶瓷窑炉的环境温度高,是一个很普遍的问题。却未引起设计者的足够重视,PLC控制柜虽然距辊道窑低温段有一定距离,但PC机与控制电机的磁力等电气元件,同时被控制面板封在一个较小的空间内,且柜内无风扇,散热不良。夏季环境温度的升高,加之生产车间通风条件有限,导致PC机停机频繁。当增设柜内风扇后,再无停机现象。
(2)急停按钮的设置问题
原系统急停按钮SB3设置在控制柜上,不便于实现两地控制,常造成半成品的大量损坏。因此在图1上增加按钮盒BX1,与施釉线急停按钮及SB3串联,使停机、开机方便自如。
(3)电机M2频繁点动影响寿命
本生产线未设置大型储坯器,当坯体供应不连续时,电机M2的等待时间太短,频繁启动而发热,曾烧坏一台。其问题出在编程上,从原梯形可以看出(如图3所示),G1处一有坯体M2便动作一次。应改为若坯体到达G2处,且G1处有坯体时,停M1;否则M1继续转动,使坯体供应连续。
图3 原梯形图
(4)控制系统的进一步优化
原系统电磁阀YV1是通过中间继电器KA1来控制的。现已去掉KA1,直接由PC控制。
从图1可以看出,光电检测管G4控制M2传送带支撑架的升降,若坯体排队不整齐时,有的坯体先到达G4处,有的还未完全脱离M2传送带,而支撑架却开始升起,损坏坯体。且G4一旦失灵,将造成整个系统的混乱。去掉G4,由PC内部时间继电器代替,不但节省费用、调节方便,而且增加了系统的可靠性
1、引 言
可编程控制器(简称PLC)以其强大的功能、很高的可靠性、抗干扰性、编程简单、使用方便、体积小巧等优点,在工业陶瓷生产过程控制中得到了普遍使用。但是当陶瓷生产工艺发生变化或有特殊要求以及生产过程出现新问题时,PLC控制系统或编程方案就应作相应的改变和优化。本文就一条年产100万m2釉面砖生产线关键设备之一的PLC自动入坯控制系统的改造,作以探讨。
2、入坯工艺流程简介
如图1所示,图1中:M1、M2为皮带电机,M4、 M5为辊台为电机,G1-G6为光电检测管,YV1为电磁阀,BX1为操作盒。当施釉线或素坯线的坯体经M1电机的传送带送至光电检测管G1位置时,G1动作,M2电机转动,由其传送带将坯体向窑前的辊台上传送,若G1处无坯体时,M2则停止;当坯体送至G2时,M1停止,送至G3时M2停止,同时电磁阀YV1得电,M2的皮带支撑架下落,坯体由窑前的辊台变速电机M4、M5驱动,由辊子传动送向窑内;至G4时,YV1失电,皮带被升起,M1电机启动,重复上述过程。
图1 入坯工艺流程
3、存在的问题与改进
原控制系统的梯形图如图2所示。采用了OMRON SP10小型机,从试运行几个月的情况来看,该机可靠性高,基本能满足使用要求。但从生产工艺、控制方式以及实际使用过程来看,其控制系统还存在下述缺陷。
3.1 生产工艺方面
该单层辊道窑既可作为产品的釉烧,又可作为素烧。当作为素烧时,传送带上的坯体是素坯,机械强度低于釉坯,工艺要求无碰伤等;当作为釉烧时,工艺上还要求严禁坯体层叠等。因此在传送过程中,应运行平稳,衔接处过渡自然,皮带升降缓慢。这些要求可以从调整传送带和对电机的控制方式(如采用变频调速)、以及对电磁阀的改造来解决。但是由电机M4、M5控制的辊台辊子,由于长期工作在较高的温度环境下,不可避免地会产生弯曲变形等,使入窑坯体排列紊乱,甚至层叠粘连而产生废品。通常这一现象由人工来监控,费时费力,笔者在图1中增加了两个光电检测管G5、G6,与报警电路及PLC相连,成功地实现了自动监控,如图2所示。
图2 坯体排列监控图