6ES7232-0HD22-0XA0品质好货
FX系列PLC梯形图中的编程元件的名称有字母和数字组成,他们分别表示元件的类型和元件号,如Y10,M129。输入继电器与输出继电器的元件号用八进制数表示,八进制数只有0~7这8个数字符号,遵循“逢8进1”的运算规则。例如,八进制数X17和X20是两个相邻的整数。表3–3给出了FX2N系列PLC的输入/输出继电器元件号。
1.输入继电器(X)
输入继电器是PLC接收外部输入的开关量信号的窗口。PLC通过光耦合器,将外部信号的状态读入并存储在输入映像寄存器中。输入端可以外接常开触点或常闭触点,也可以接多个触点组成的串并联电路或电子传感器(如接近开关)。在梯形图中,可以多次使用输入继电器的常开触点和常闭触点。
图3–6是一个PLC控制系统的示意图,X0端子外接的输入电路接通时,它对应的输入映像寄存器为1状态,断开时为0状态。输入继电器的状态惟一地取决于外部输入信号的状态,不可能受用户程序的控制,因此在梯形图中不能出现输入继电器的线圈。
因为PLC只是在每一扫描周期开始时读取输入信号,输入信号为ON或OFF的持续时间应大于PLC的扫描周期。如果不满足这一条件,可能会丢失输入信号。
2. 输出继电器(Y)
输出继电器是PLC向外部负载发送信号的窗口。输出继电器用来将PLc的输出信号传
送给输出模块,再由后者驱动外部负载。如果图3-6梯形图中Y4的线圈“通电”,继电器型输出模块中对应的硬件继电器的常开触点闭合,使外部负载工作。输出模块中的每一个硬件继电器仅有一对常开触点,但是在梯形图中,每一个输出继电器的常开触点和常闭触点都可以多次使用。
一般认为输入点数是按系统输入信号的数量来确定的。但在实际应用中,通过以下措施可达到节省PLC输入点数的目的,下面以FX1N系列PLC来介绍。
(1)分组输入 如图1所示,系统有“手动”和“自动”两种工作方式。用X000来识别使用“自动”还是“手动”操作信号,“手动”时的输入信号为SB0~SB3,“自动”时的输入信号为S0~S3,如果按正常的设计思路,那么需要X000~X007一共8个输入点,若按图1的方法来设计,则只需X001~X004一共4个输入点。图中的二极管用来切断寄生电路。如果图中没有二极管,系统处于自动状态,SB0、SB1、S0闭合S1断开,这时电流从COM端子流出,经SB0、SB1、S0形成寄生回路流入X000端子,使输入位X002错误地变为ON。各开关串联了二极管后,切断了寄生回路,避免了错误的产生。但使用该方法应考虑输入信号强弱。图1 分组输入
(2)矩阵输入 如图2所示为4×4矩阵输入电路,它使用PLC的四个输入点(X000~X003)和四个输出点(Y000~Y003)来实现16个输入点的功能,特别适合PLC输出点多而输入点不够的场合。当Y000导通时,X000~X003接受的是Q1~Q4送来的输入信号;当Y001导通时,X000~X003接受的是Q5~Q8送来的输入信号;当Y002导通时,X000~X003接受的是Q9~Q12送来的输入信号;当Y003 导通时,X000~X003接受的是Q13~Q16送来的输入信号。将Y000的常开点与X000~X003串联即为输入信号Q1~Q4;将Y1的常开点与X000~X003串联即为输入信号Q5~Q8;将Y002的常开点与X000~X003串联即为输入信号Q9~Q12;将Y003的常开点与X000~X003串联即为输入信号Q13~Q16。图2 矩阵输入
使用时应注意的是除按图2进行接线外,还必须有对应的软件来配合,以实现Y000~Y003轮流导通;同时还要保证输入信号的宽度应大于Y000~Y003轮流导通一遍的时间,否则可能丢失输入信号。该方法的缺点是使输入信号的采样频率降低为原来的三分之一,而且输出点Y000~Y003不能再使用。(3)组合输入 对于不会同时接通的输入信号,可采用组合编码的方式输入。如图3所示,三个输入信号SB0~SB2只占用两个输入点,M0~M2图3 组合输入
分别代表SB0~SB2。
(4)输入设备多功能化 在传统的继电控制系统中,一个主令(按钮、开关等)只产生一种功能的信号。在PLC控制系统中,一个输入设备在不同的条件下可产生不同的信号,如一个按钮既可用来产生启动信号,又可用来产生停止信号。如图4所示,只用一个按钮通过X000去控制Y000的“通”与“断”。即次接通X000时Y000“通”再次接通X000时Y000“断”。(5)输入触点的合并 将某些功能相同的开关量输入设备合并输入(常闭触点串联输入、常开触点并联输入)。一些保护电路和报警电路常常采用此法。
如果外部某些输入信号总是以某种“与或非”组合的整体形式出现在梯形图中,可以将它们对应的某些触点在可编程序控制器外部串并联后作为一个整体输入可编程序控制器,只占可编程序控制器的一个输入点。
例如某负载可在多处启动和停止,可以将多个启动信号并联,将多个停止信号串联,分别送给可编程序控制器的两个输入点,如图5所示。与每一个启动信号和停止信号占用一个输入点的方法相比,不仅节约了输入点,还简化了梯形图电路。
PLC模拟量输人输出模块在工业控制中的作用介绍
在工业控制中,某些输入量(如压力、温度、流量、转速等)是连续变化的模拟量,某些执行机构(如伺服电动机、调节阀、记录仪等)要求PLC输出模拟信号,而PLC的CPU只能处理数字量。模拟量首先被传感器和变送器转换为标准的电流或电压,如4~20mA,1~5V,0~10V,PLC用A/D转换器将它们转换成数字量。这些数字量可能是二进制的,也可能是十进制的,带正负号的电流或电压在A/D转换后一般用二进制补码表示。
D/A转换器将PLC的数字输出量转换为模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是完成A/D转换(模拟量输入)和D/A转换(模拟量输出)。
例如在炉温控制系统中,炉温用热电偶检测,温度变送器将热电偶提供的几十毫伏的电压信号转换为标准电流(如4~20mA)或标准电压(如l~5V)信号后送给模拟量输入模块,经A/D转换后得到与温度成比例的数字量,CPU将它与温度设定值比较,并按某种控制规律(如PID)对二者的差值进行运算,将运算结果(数字量)送给模拟量输出模块,经D/A转换后变为电流信号或电压信号,用来调节控制天然气的电动调节阀的开度,实现对温度的闭环控制。
有的PLC有温度检测模块,温度传感器(热电偶或热电阻)与它们直接相连,省去了温度变送器。
大中型PLC可以配置成百上千个模拟量通道;它们的D/A,A/D转换器一般是12位的。模拟量I/O模块的输入、输出信号可以是电压,也可以是电流;可以是单极性的,如0~5V,0~10V,1~5V,4~20ms,也可以是双极性的,如+50mV,±5V,±10V和±20mA,模块一般可以输入多种量程的电流或电压。
A/D,D/A转换器的二进制位数反映了它们的分辨率,位数越多,分辨率越高,例如8位A/D转换器的分辨率为2-8=0.38%;模拟量输入/输出模块的另一个重要指标是转换时间。
(1)外壳
三相电动机外壳包括机座、端盖、轴承盖、接线盒及吊环等部件。
机座:铸铁或铸钢浇铸成型,它的作用是保护和固定三相电动机的定子绕组。中、小型三相电动机的机座还有两个端盖支承着转子,它是三相电动机机械结构的重要组成部分。通常,机座的外表要求散热性能好,所以一般都铸有散热片。
端盖:用铸铁或铸钢浇铸成型,它的作用是把转子固定在定子内腔中心,使转子能够在定子中均匀地旋转。
轴承盖:也是铸铁或铸钢浇铸成型的,它的作用是固定转子,使转子不能轴向移动,另外起存放润滑油和保护轴承的作用。
接线盒:一般是用铸铁浇铸,其作用是保护和固定绕组的引出线端子。
吊环:一般是用铸钢制造,安装在机座的上端,用来起吊、搬抬三相电动机。
(2)定子铁心
异步电动机定子铁心是电动机磁路的一部分,由0.35mm~0.5mm厚表面涂有绝缘漆的薄硅钢片叠压而成,如图2所示。由于硅钢片较薄而且片与片之间是绝缘的,所以减少了由于交变磁通通过而引起的铁心涡流损耗。铁心内圆有均匀分布的槽口,用来嵌放定子绕圈。(a)定子铁心 (b)定子冲片
图2 定子铁心及冲片示意图
(3)定子绕组
定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相对称电流时,就会产生旋转磁场。三相绕组由三个彼此独立的绕组组成,且每个绕组又由若干线圈连接而成。每个绕组即为一相,每个绕组在空间相差120°电角度。线圈由绝缘铜导线或绝缘铝导线绕制。中、小型三相电动机多采用圆漆包线,大、中型三相电动机的定子线圈则用较大截面的绝缘扁铜线或扁铝线绕制后,再按一定规律嵌入定子铁心槽内。定子三相绕组的六个出线端都引至接线盒上,首端分别标为U1, V1, W1 ,末端分别标为U2, V2, W2 。这六个出线端在接线盒里的排列如图3所示,可以接成星形或三角形。(a)星形连接 (b)三角形连接
图3 定子绕组的联结
本文旨在阐述利用PLC控制伺服电机实现准确定位的方法,介绍控制系统在设计与实施中需要认识与解决的若干问题,给出了控制系统参考方案及软硬件结构的设计思路,对于工业生产中定位控制的实现具有较高的实用与参考价值。
在自动化生产、加工和控制过程中,经常要对加工工件的尺寸或机械设备移动的距离进行准确定位控制。这种定位控制仅仅要求控制对象按指令进入指定的位置,对运动的速度无特殊要求,例如生产过程中的点位控制(比较典型的如卧式镗床、坐标镗床、数控机床等在切削加工前刀具的定位),仓储系统中对传送带的定位控制,机械手的轴定位控制等等。在定位控制系统中常使用交流异步电机或步进电机等伺服电机作为驱动或控制元件。实现定位控制的关键则是对伺服电机的控制。由于可编程控制器(PLC)是专为在工业环境下应用而设计的一种工业控制计算机,具有抗干扰能力强、可靠性极高、体积小等显著优点,是实现机电一体化的理想控制装置。本文旨在阐述利用PLC控制伺服电机实现准确定位的方法,介绍控制系统在设计与实施中需要认识与解决的若干问题,给出了控制系统参考方案及软硬件结构的设计思路,对于工业生产中定位控制的实现具有较高的实用与参考价值。
1 利用PLC的高速计数器指令和旋转编码器控制三相交流异步电机实现的准确定位
1.1 系统工作原理
PLC的高速计数器指令和编码器的配合使用,在现代工业生产自动控制中可实现jingque定位和测量长度。目前,大多数PLC都具有高速计数器功能,例如西门子S7-200系列CPU226型PLC有6个高速计数器。高速计数器可以对脉宽小于PLC主机扫描周期的高速脉冲准确计数,不需要增加特殊功能单元就可以处理频率高达几十或上百kHz的脉冲信号。旋转编码器则可以将电动机轴上的角位移转换成脉冲值。
利用PLC的高速计数器指令和编码器控制三相交流异步电机实现的准确定位控制系统,其原理是通过与电动机同轴相连的光电旋转编码器将电机角位移转换成脉冲值,经由PLC的高速计数器来统计编码器发出的脉冲个数,从而实现定位控制。
1.2 设计与实施
以对传输带的定位控制设计为例加以说明。现需要用传输带运送货物,从货物运送起点到指定位置(终点)的距离为10 cm。现要求当传输带上的货物运行10 cm后,传输带电机停止运行。该系统硬件设置主要包括西门子S7-200CPU226型PLC、传输带电机(三相交流异步电机)、OMRON的E6A2-CW5W光电旋转编码器、松下VFO系列BFV00042GK变频器等。该系统的工作原理是将光电编码器的机械轴和传动辊(由三相交流异步电机拖动)同轴相连,通过传动辊带动光电编码器机械轴转动,输出脉冲信号,利用PLC的高速计数器指令对编码器产生的脉冲(采用A相脉冲)个数进行计数,当高速计数器的当前值等于预置值时产生中断,经变频器控制电动机停止运行,从而实现传输带运行距离的准确定位控制。很显然,该控制系统中实现准确定位控制的关键是对PLC的高速计数器的预置值进行设置,高速计数器的预置值即为传输带运行10 cm时光电编码器产生的脉冲数。该脉冲数值与传输带运行距离、光电编码器的每转脉冲数以及传动辊直径等参数有关。该脉冲数可以通过实验测量也可通过计算得出。计算得出传输带运行10 cm对应的脉冲数为:
脉冲数=[(传动辊直径(mm)×π÷(脉冲数/转)]×传送带运行距离(mm)
该系统通过计算得出脉冲数为100,则高速计数器的预置值即为100。参考程序如图1所示。
在子程序中,将高速计数器HSC0设置为模式1,即单路脉冲输入内部方向控制的增/减计数器。无启动输入,使用复位输入。系统开始运行时,调用子程序HSC_INIT,其目的是初始化HSC0,将其控制字节SMB37数据设置为16#F8,对高速计数器写入当前值和预置值,同时通过中断连接指令ATCH将中断事件12(即高速计数器的当前值等于预置值中断)和中断服务程序COUNT_EQ连接起来,并执行ENI指令,全局开中断。当高速计数器的当前值等于预置值时,执行中断服务程序,将SMD42的值清零,再次执行HSC指令重新对高速计数器写入当前值和预置值,同时使M0.0置位,电动机停止运行。