西门子模块6ES7235-0KD22-0XA8技术数据
引言
在生产机械的自动控制领域,PLC顺序控制系统的应用量大面广。然而,工艺不同的生产机械要求设计不同的控制系统梯形图。目前,不少电气设计人员仍然采用经验设计法来设计PLC顺序控制系统,不仅设计效率低,容易出差错,而且设计阶段难以发现错误,需要多次调试、修改才符合设计要。本文提出的4种简易设计方法,能快速地一次设计成功PLC顺序控制系统。
顺序控制系统的特点及设计思路
1.特点顺序控制系统是指按照预定的受控执行机构动作顺序及相应的转步条件,一步一步进行的自动控制系统。其受控设备通常是动作顺序不变或相对固定的生产机械。这种控制系统的转步主令信号大多数是行程开关(包括有触点或无触点行程开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关),有时也采用压力继电器、时间继电器之类的信号转换元件作为某些步的转步主令信号。
为了使顺序控制系统工作可靠,通常采用步进式顺序控制电路结构。所谓步进式顺序控制,是指控制系统的任一程序步(以下简称步)的得电必须以前一步的得电并且本步的转步主令信号已发出为条件。对生产机械而言,受控设备任一步的机械动作是否执行,取决于控制系统前一步是否已有输出信号及其受控机械动作是否已完成。若前一步的动作未完成,则后一步的动作无法执行。这种控制系统的互锁严密,即便转步主令信号元件失灵或出现误操作,亦不会导致动作顺序错乱。
2.设计思路本文提出的4种简易设计方法都是先设计步进阶梯,在步进阶梯实现由转步主令信号控制辅助继电器得失电;然后根据步进阶梯设计输出阶梯,在输出阶梯实现由辅助继电器控制输出继电器得失电。这4种设计法所设计的梯形图电路结构及相应的指令应适用于大多数PLC机型,具有通用性。
由于各种PLC机型的编程元件代号及其编号不尽相同,为便于阐述,本文约定:所有梯形图中的输入继电器、输出继电器、辅助继电器(又称内部继电器)的代号分别为:X、Y、M。设计中所用到的某些功能指令,如置位指令约定为S×,复位指令为R×;移位指指令为SR×。其中的“×”表示编程元件的编号,用十进制数表示。用这些方法设计实际的控制系统时,应将编程元件代号和编号变换成所选用的PLC机型对应的代号和编号。
图1 顺序控制流程
下面分别介绍各种设计方法。其中,前3种方法的设计依据都是图1所示的顺序控制流程。图中,步1的转步主令信号X0为连接启动按钮的输入继电器(为简明起见,后述的转步主令信号均省去“输入继电器”几个字,只提输入信号),X1为原位开关信号,X2、X3、X4分别为步2、3、4的转步主令开关信号。M1~M5分别为各步的受控辅助继电器。Y1~Y4分别为各步受控的输出继电器。
一、逐步得电同步失电型步进顺序控制系统设计法
如图2所示,这种设计方法是根据“与”、“或”、“非”的基本逻辑关系,设计成串联、并联或串、并联复合的电路结构。
图2 逐步得电同步失电步进顺控梯形图
1.步进阶梯的设计步进阶梯的结构
如图2a所示。步1的M1得电条件是受控机械原位开关X1处于压合状态(若受控机械有多个执行机构,则要求每个执行机构的原位开关均处于压合状态),满足原位条件后按起动按钮X0才能得电。M1得电后自锁,并为步2提供步进条件信号(M1的常开触点)。步1的执行动作完成时触发的行程开关信号X2作为步2的转步条件信号。步2的M2的输入满足其步进条件和转步条件后得电自锁,并为步3提供步进条件信号。按此规律即可实现后续每一工作步辅助继电器的得电和自锁。停止步M5的步进条件信号和转步条件信号分别为:后一个工作步M4发出的步进条件信号(M4的常开触点)和该步动作完成时所触发的转步信号X1。由于M5的得电信号令控制系统失电,所以M5的回路不自锁,而且要将其常闭触点串联在步1回路的左端。从步2起后续各个步的回路构成分支回路。一旦M5得电便使整个系统失电。如不用分支回路的结构,也可采用图3所示的回路。即把M5常闭触点分别串联在每步辅助继电器的回路上。应该注意的是:无论工作步还是停止步,如果某步的转步主令信号有多个,则应将多个转步主令信号互相串联。
图3 逐步得电同步失电梯形图
2.输出阶梯的设计输出阶梯
如图2b所示。其设计方法是:(1)在控制流程图中,找出某输出继电器M在哪一步开始得电和在哪一步开始失电,以此确定其得电信号(步进阶梯中使M开始得电的辅助继电器常开触点)和失电信号(步进阶梯中使M开始失电的辅助继电器常闭触点);(2)将得电信号、失电信号和受控输出继电器线圈串联。如果某个输出继电器在一个工作循环中多次得电失电,则将每次得失电的串联信号互相并联即可。例如,图1中输出继电器Y1要求在步1和步3得电,在其余步失电。在图2b画其控制回路时,将图1所示的次得电信号M1和次失电信号M2串联,第二次得电信号M4和第二次失电信号串联,然后将二者并联起来,再与Y1的线圈串联便构成Y1的控制回路。其余依此类推。
二、逐步得电逐步失电型步进顺序控制系统设计法
1.步进阶梯设计
按图1所示的控制流程,采用逐步得电逐步失电型顺序控制系统设计法设计的步进阶梯如图4a所示,其电路结构与图3的不同点之一是每步的失电由下一步辅助继电器的常闭接点控制;之二是步1回路必须串联步2至后工作步4的辅助继电器常闭触点。以防电路工作时,因误操作再次起动而导致控制顺序错乱。其余的电路结与图3相同。
2.输出阶梯设计输出阶梯如图4b所示,输出继电器的控制回路根据控制流程直观确定。例如,输出继电器Y1要求在步1、3得电,则将步1、3的辅助继电器M1、M3的常开触点并联,再与Y1的线圈串联即可。其余输出继电器的控制回路构成方法与此相同。
图4 逐步得电逐步失电型顺控系统梯形图
三、置位/复位指令型顺序控制系统设计法
1.步进阶梯设计图5a为用置位/复位指令设计的顺序控制系统步进阶梯。其设计依据也是图1所示的控制流程。该步进阶梯结构的特点是每步的辅助继电器都有一个置位线圈和一个复位线圈,二者编号相同。步1利用置位指令S使辅助继电器M1置位(即M1线圈得电后内部自锁),建立步1程序,并为步2提供步进条件信号。当步2的转步主令信号发出(X2闭合),指令S使M2置位,建立步2程序,同时复位指令R使M1复位,撤销步1程序。同理可画出后续各步继电器置位/复位梯形图。当后一步完成并回到原位(X1闭合)时,指令R使M4复位,系统的工作循环结束。
2.输出阶梯设计图5b为输出阶梯结构,与图4b完全相同,不再赘述。
图5 置位/复位指令型顺序控制电路
四、移位指令型顺序控制系统设计
1.步进阶梯设计设计依据如图6所示。图7a为按图6所示要求采用移位指令设计法设计的顺序控制系统步进阶梯,这种步进阶梯由一个8位移位寄存器(由移位指令定义辅助继电器M20~M27而成)作为控制元件。该移位寄存器中的IN为移位数据输入端,CP为移位脉冲输入端,R为复位端。这三个输入端的输入信号均为脉冲上升沿有效。对顺序控制系统来说,输入IN的信号必须是一个单脉冲信号,即移位数据为“1”。起动步1时,IN和CP同时输入按钮信号X0的脉冲上升沿后,在IN端生成的移位数据“1”便移入移位寄存器的M20位,此时该位有输出(即输出M20的常开触点闭合信号),建立步1程序,并为步2提供步进条件信号;M20的常闭触点即时断开IN输入端和CP的步1输入端,完成数据“1”输入和移位脉冲输入。从步2起,本步的转步主令信号一发出(X2接通),便输入一个移位脉冲上升沿,使原来移入M20位的数据“1”移入M21位,建立步2程序,并为步3提供步进条件信号。移位后,M20位的状态变为0,即其相应的步1被撤销,输出为0。依此类推便可实现整个步进阶梯逐步得电和逐步失电。后一步完成并回到原位(X1接通)时,接通移位寄存器的复位端R,使移位寄存器复位清零,整个控制系统失电停止。
图6 移位顺序控制流程图
图7 移位指令型顺序控制电路
设计这种步进阶梯时要注意以下问题:(1)在一个自动工作循环内,移位寄存器的移位数据输入端IN只允许起动时输入一个单脉冲信号。也就是说起动时只能输入移位数据“1”。步进阶梯的工作原理就是根据输入的数据“1”,在移位寄存器中逐步向高位移位来实现逐步得电和逐步失电。所以输入端IN要串联每个移位输出位的常闭触点;(2)移位寄存器对移位脉冲输入端开关的抖动非常敏感。若开关抖动一次,相当于多输入了一个移位脉冲,移位数据“1”随之多移了一位。由于接点式开关被触发时难免产生抖动。为消除这种影响,在移位脉冲输入端的步1输入回路,必须串联移位寄存器0位(本例为M20)的常闭触点,一旦移位数据移入M20位,便断开步1的输入回路;而从步2开始,每步的输入回路也要串联上一位的常开触点。例如步2的输入回路要串联上一位M20的常开触点。这样,当移位到步2转步主令信号对应的M21位时,便立即断开步2的输入回路。采用这样的移位脉冲输入回路结构,可确保每步的转步输入信号持续时间只有PLC的一个扫描周期(一般只有几Ms),因开关的抖动时间远大于PLC的一个扫描周期。所以可有效地消除开关抖动的影响。
2.输出阶梯设计图7b为输出阶梯,其结构与图4b相同,只是辅助继电器编号不同而已。
结束语
上述4种PLC顺序控制系统设计方法的共同特点是:
(1)由输入继电器控制辅助继电器(包括由置位/复位指令和移位指令定义的辅助继电器),按此构成步进阶梯;
(2)由辅助继电器控制输出继电器,以此构成输出阶梯;
(3)无论步进阶梯还是输出阶梯,都是很有规律的回路结构。不管要设计的顺序控制系统有多少步,也不管其输入输出点数有多少,只要弄清各种设计方法所设计的步进阶梯和输出阶梯的回路结构的规律性,根据设计依据,套用其中任一种设计方法的回路结构,就能快速地一次成功设计出较复杂的PLC顺序控制系统。
、前言
目前,在工业过程控利领域出现了一种新兴的控制技术,即现场总线(Fieldbus),它是在生产现场微机化测控设备之间实现双向串行多节点数字通信系统,也既为开放式,数字化,多点通信的底层控制网络。现场总线技术顺应了“智能化,数宁化,信息化,网络化,分散化”的当今自控技术发展的主流,是当今自动控制技术发展的热点,代表了工业控制领域今后的一种发展方向,使传统的控制系统无论在结构上还是在性能上出现巨大的飞跃,形成厂新型的网络集成式全分布控制系统现场总线控制系统FCS(Fieldbus Control System),对传统的集散控制系统Dcs(Distribution Control System)造成了冲击。现场总线正逐步在过程自动化,制造自动化,智能楼宇,交通等各行业得到推广应用。
2、现场总线
2.1 Fieldbus产生背景
现场总线技术起源于用户现场控制信息传递、维护管理等方面的要求,是20世纪80年代发展起来的。
60年代-70年代,处于企业生产过程底层的传统测控自动化系统,采用两线制电压电流模拟信号进行测量控制,70年代中期,形成集散控制系统DCS,采用三层结构模式,存在线路多,维护管理麻烦,且各开发商的DCS遵循各自的标准,不能互联,以及难于实现设备之间和系统与外界之间的信息交换等,严重制约了系统本身的发展。随着计算机网络及通信技术的迅速发展,现场有越来越多的信息需要往上传,通信技术越来越往下延伸到现场,信息沟通联络的范围不断扩大。为实现企业的信息集成,实施综合自动化,使模拟仪表向智能化仪表发展、工业控制分立设备向共享设备发展、计算机网络从TOP、MAP向现场级网络发展,终用户需要一种适应工业现场环境运行、可靠性高、实时性强、造价低廉、结构简单、维护方便的控制系统,以形成工厂的底层网络,完成现场自动化设备之间的多点数字通信、以及自动化系统与外界的信息交换。现场总线就是/在这种实际需求的驱动下产生的。它是以自动控制、自动化仪表、计算机、通信、微电子为主要内容的一门综合技术,是当今技术发展的结果。
现场总线把专用微处理器植入传统的测量控制仪表,使它们各自都具有丁独立承担某些控制、数字计算和数字通信能力。提高丁信号的测量、控制、传输精度和速度,同时丰富信息的内容。现场总线可采用多种传输介质,如用普通电缆、双绞线、光纤、红外线、甚至电力传输线等,把多个测量控制仪表、计算机等作为节点连接成的网络系统,在现场总线的环境下,借助现场总线网段以及与之有通信连接的其它网段,实现数据传输与信息共享,实现异地远程控制。现场总线设备与传统自控设备相比,拓宽了信息内容,提供传统仪表所不能提供的如阀门开关动作次数、故障诊断等信息,便于操作管理人员更好、更深入地了解生产现场和自控设备的运行状态。
2.2 Fieldbus技术特点
(1) 开放性、互操作性和互换性
遵循公开统一的技术标准,可实现设备互操作性和互换性。也就是说,用户可以把遵守相同标准的不同厂家、不向品牌、功能相同的产品集成在同一个系统内,构成FCS,并可在同功能的产品之间进行相互替换,使用户具有了自控设备选择、集成的主动权。
(2) 数字化通信
现场设备具有数字通信功能。利用数字信号代替模拟信号,其传输抗干扰性强,测量精度高,大大提高了系统性能。
(3) 智能化与功能自治性
智能化的现场设备可以实现多种先进的功能,如简单控制功能、检测、变换、诊断和运算等,可现场就地及时处理信息,不使信息过多地往返于网络上传递,提高传输速度和减小控制响应时间。
(4) 高度分散性
现场设备智能化,实现彻底的分散控制,位控制系统功能不依赖控制室的计算机或控制仪表,而在现场完成,简化了系统结构,提高了可靠性。
(5) 适应性
指对现场环境的适应性,含电磁环境,气候环境,机械环境。大部分现场总线结构是线状的,且采用两线制实现供电和通信,易解决网络供电、本安防爆等问题,具有较强抗干扰能力。
3、DCS
3.1 DCS的产生
70年代工业的发展使生产过程日益复杂,规模更加扩大,在生产中采用原来的集中控制系统,可靠性差,出现事故时会中断生产,为提高可靠性,满足生产过程控制要求,70年代初,美国日本利欧洲等国开始研制集散型控制系统(DCS)。 DCS是计算机、通信、CRT和控制技术的结合。
3.2 DCS的技术特点
系统的—些主要特点为:
(1) 控制功能强。可实现复杂的控制规律,如串级、前馈、解耦、自适应、优和非线性控制等,也可实现顺序控制。
(2) 系统可靠性高。
(3) 采用CRT操作站有良好的人机交互接口。
(4) 软硬件采用模块化积木式结构。
(5) 系统容易开发。
(6) 用组态软件,编程简单,操作方便。
(7) 具有良好的性价比。
DCS是以微处理器为核心,实现地理上和功能上相对分散的控制系统,通过数据通道把各个分散点的信息集中起来,进行集中的监视和操作,它具有事故分析、性能计算、历史数据存储、分析、各种报表生成、打印等功能,目前已经在国内外得到非常广泛的应用。在DCS系统中,测量变送,执行器一般由模拟仪表来完成,他们与控制室的监控计算机共同构成控制系统,是模拟和数字混合系统,可实现复杂规律的控制。
4、PLC
可编程控制器(PLC)是60年代发展起来的一种自动控制装置,是一种嵌入式的工控机,他以顺序控制为主,回路调节为辅,能完成逻辑判断、定时、计数、记忆和算术运算功能,既能进行开关量控制,又能进行模拟量控制,还具有通信功能。随着自动控制技术,计算机技术和微电子技术的迅猛发展,PLC的发展十分迅速,一方面继续开发简易,价格低廉,超小型产品,另一方面转向大型、多功能、系列化、标准化、智能化产品的研制。在单台设备的自动化、多台设备自动化和整个工厂的生产过程自动化, PLC在其中充当着重要作用。
5、发展应用
当计算机网络技术,特别是互联网技术得到广泛应用后,人们对企业生产过程的控制提出了更高的要求,企业与外界信息沟通的范围不断扩大,这就需要把大量的现场信息送到外面,又需要远程对现场进行诊断、维护和服务,实现从现场控制到监控、管理、决策等各层次的信息交换和集成。现场总线顺应了这种要求的发展。
现场总线的优点为:
(1) 系统功能扩充、结构改型方便。
(2) 降低系统部分成木。节省控制柜,大幅度减少导线、电线桥架、接插件等,系统结构简洁。
(3) 系统可靠性高。由于全数字化信号精度比传统的模拟信号高,高度分散控制使风险得到彻底分散。
(4) 系统可维护性好。智能化的现场设备具有自诊断功能,使设备的预防性诊断和维护得以实现。
(5) 用户具有高度的系统集成主动权。在传统控制系统集成中遇到的不兼容协议、接口等问题得到了解决,用户可以自由选择不同厂商所提供的产品来集成系统。
(6) 提供更丰富的现场信息,能够更深入地掌握现场生产过程情况、设备仪表信息。
作为开放互连系统的现场总线,首先必须有统一的技术标准,但由于诸多原因,已经在不同领域形成了颇具影响的几大总线系列,如基金会现场总线(FF)、LonWorks、 PROFIBUS、 CAN、 HART等。当然,多种现场总线之间的良性竞争,有利于FCS技术的提高和发展,也有利于产品价格的降低和用户系统投资成本的减小,但是,发展共同遵从的统一的,是现场总线的发展方向,也是广大用户的要求。
现场总线是工业过程控制技术的发展主流,可以说FCS的发展应用是自动化领域的一场革命,也既要“革”传统仪表的命,同时向传统DCS发出了挑战。对于DCS的发展过程,因为受计算机系统早期存在的一些缺陷影响,造成各生产开发商的产品自成一体,较难实现互换和互操作,系统也难了与外界进行信息交换,这样对用户来说,使企业的信息集成存在一定的困难;另外, DC3的控制分散也并不是彻底的分散,控制功能是通过各个集中的过程控制站如PLC来完成,许多方面的性能与FCS相比有较大差距。但是,DCS在当前情况下仍具有较强的生命力,其理由为:
(1)近年来DCS技术的成熟以及广泛应用,DCS在可靠性、开放性、标准化方面大大前进了一步。
(2)DCS的价格大幅度下降。
(3)DCS能够满足目前的生产控制要求,用户习惯容易接受。
(4)FCS正在发展过程之中,某些方面还不是十分完美。比如说现场总线的线状结构,一旦总线某支路的电缆断了,这条文路的运行就瘫痪了。又如系统组态铰复杂,不易将系统设置到佳状态等。
(5)目前现场总线仪表与常规仪表相比价格仍然较贵,硬要去追求潮流,将企业现有的运行良好的传统仪器仪表更新成智能仪器仪表,以及将DCS改换成FCS不是很现实的。
基于上述原因, DCS现在仍是大多数用户选择的主流控制系统。FCS作为一个完整的控制系统,也需要具有类似于DCS那样的监控管理系统,FCS的发展不是对DCS的否定,既有在它们基础上对优点的继承,又具有自己特色的变革部分。虽然传统DCS属非开放式专用网络,但根据目前的实际情况,将出现通过特殊的网关将DC3挂接在现场总线网段上,或作为企业网络中的—个特殊的子网,形成现场总线与DCS并存的局面。传统的DCS在—个过渡阶段内,仍会在一个很长的时期内在工业控制领域发挥重要作用,而且,DCS如果能融合FCS的优势技术,将会是“柳暗花明又一春”。
在FCS中,智能仪器仪表代替传统仪表,控制功能下放分散到现场,PLC的作用将被取代吗?答案是否定的。PLC是一种面向工业现场的控制装置,它的特点为:
(1)高可靠性和抗扰能力,可适应恶劣的工业现场环境。
(2)I/O模块化,智能化,方便组合和扩充。
(3)操编程方便。
(4)完善的监视和诊断功能。
我们应该看到PLC的直观、简单、价格低、易维护、高可靠性等特点,并且现在的PLC不再是原来只能实现开关量控制和PID调节等功能的PLC,随着模糊控制、神经元网络、遗传算法等学科的日益成熟,PLC可以而且已经不断融合这些及其他先进的技术,佼控制、通信等功能不断增强,现在,模糊控制功能已植入到了PLC内,产品已经投放到了市场,控制功能更加强大。再者,在FCS中,PLC作为FCS中的一个节点,可完成现场的一些复杂控制功能,使它不会受到FCS发展的影响而被淘汰,所以不管是在FC3中还是在DC3中, PLC还会在系统中作为一个重要的角色存在,而且发展前景将更加广阔。
6、结语
现场总线代表了一种有突破意义的新的控制思想,它开辟了控制领域的一个新时代。FCS是工控领域发展的主流,DC3在很长时期内仍具有旺盛的生命力,而PLC通过不断的发展,将在工控系统中继续发挥它的强大的控制功能。作为终用户,希望的是选用顺应当前技术发展潮流,系统投入、运行成本低,可靠性高,管理维护容易,结构简单,易扩充和具有高度系统集成主动权的控制系统
1 引言
近几年来,可编程序控制器(PLC)以其可靠性高、适应性强、灵活性好、编程简单、容易掌握等特性,在各个领域发挥越来越重要的作用。在PLC控制系统中,PLC作为主要控制设备,必然与控制对象中各种输入信号(如按钮、限位开关、拔动开关、继电器的触点及其它检测信号等)和输出设备(如继电器线圈、接触器线圈、电磁阀等执行元件)相关联。在实际工作中,由于受PLC应用系统规模的限制,PLC输入/输出点数往往不够用。为此若采用扩展输入/输出单元或更换点数更多的PLC来解决有时又不合算,为了降低系统硬件的成本,常常采用各种技巧减少系统占用的输入/输出点数,相当于扩展了PLC的I/O点数。本文从硬件、软件两个方面介绍在不增加硬件情况下“扩展”PLC I/O点数的几种方法。
2 “扩展”I/O点数的方法
2.1 分组输入
有些PLC控制既有“手动控制”又有“自动控制”,而自动控制程序和手动控制程序不会同时执行,这时可将自动与手动信号按不同控制状态要求分组接入PLC输入端子,如图1所示(本文以三菱FX2小型PLC编号分配为例进行梯形图设计)。图1中SA用来选择自动/手动程序,供自动/手动切换之用,SB2和SB1按钮都使用X0输入端,但它们不会同时起作用,图1中的二极管用来切断寄生信号,避免错误信号的产生。这样,通过PLC的硬件公共点(COM)接线的转换和软件分时执行各自不同的用户程序段的方法,使得PLC的一个输入点可分别反应两个输入信号的状态,起到两个输入点的作用,来完成PLC在两种工作状态下的输入功能,提高了PLC输入点的利用效率,相当于扩展了PLC的输入点的实际数量。其它X1-X7端相似。
图1 分组接入PLC输入端子
2.2 采用硬件接线完成简单的“与”、“或”逻辑,减少电路I/O点数
(1) 减少电路输入点数
图2是一个由继电器、接触器组成的电动机起动、停止两地控制电路,可以实现电动机在两个地方起动、停止的控制。如将此电路改为PLC控制,PLC输入电路有多种接法,对应的梯形图也有多种。从图3和图4这两种接线图及相应的梯形图可以看出:图3的接线占用输入多(共5个),梯形图也显得复杂,但判断输入设备故障时形象较直观。当PLC输入点比较紧张时,可采用图4所示的输入接线图,它占用PLC输入点较少(共3个),相应的梯形图也比较简单。
图2 电机起/停两地控制电路
图3 图2的PLC控制图(I/O点用的较多)
图4 图2的PLC改进输入法(I/O点用的较少)
(2) 减少所需PLC的输出点数
对于通断状态完全相同的负载,在PLC的输出端点功率允许的情况下可并联于同一输出端点,即一个输出端点带多个负载。例如输出信号灯与负载并联,如图5所示,这样可减少一半输出点数。但要注意不能超出每个端点的允许负载能力。
图5 信号灯与负载并联时的情况
此外,还可采用三线-八线编码、译码方法,只增加少量的外部元件,即可实现将8个显示输出口减少为3个输出口。
2.3 通过软件编程减少电路I/O点数
(1) 用一个按钮实现起动和停止
一般情况下,PLC控制的外部设备至少要有1个起动按钮和1个总停止按钮作为输入信号,来控制程序的运行和停止,因此至少需要2个输入点。当输入的总点数紧张时,也可用1个自复位按钮SB3实现起动和停止两种控制,其输入接线如图6所示,相应的梯形图可采用图7或图8所示的两种设计方法。图7中的M0为内部继电器,作中间环节使用。图8中采用了置位、复位指令及定时器T0来完成单按钮实现起动和停止的功能。采用图8所示的梯形图时,应注意T0的设定值应大于按钮X0按住的时间t。
图6 用1个自复位按钮实现启动和停止控制
单按钮起动、停止电路除了可以采用图7、图8所示的梯形图来实现外,还可采用移位寄存器或计数器来实现。
图7 对应于图6的梯形图
图8 图6的另一种梯形图
(2) 用4个输入点表示10个输入信号状态
对于直流输入模块,采用双常开按钮的编程技巧,输入点可在一定程度上得到扩展。例如,利用图9所示的梯形图可把4个输入点扩展为10种输入信号状态。图9中直流输入模块的X1、X2、X3、X4均接入常开按钮,利用这4个按钮的不同状态组合可表示10种输入信号。如假设图9中的个逻辑行表示正向起动,第二个逻辑行表示反向起动,第三个逻辑行表示总停止等等。
图9 4个输入点扩展为10种输入信号状态的梯形图
对应图9的输入接线如图10所示,图10中的二极管用来切断寄生信号。在调整时,若操作人员同时按下SB7和SB8(或SB6和SB9),则会发出报警信号。为了避免这种情况的发生,专门设置了一个判别程序,利用T12的常闭触点禁止第5到第10逻辑行执行,保证错误信号无法执行。编程过程中可用T0到T11替代SB1到SB10信号。
同前所述,也可采用8个输出点组成BCD码,表示100个输出信号的状态,可节省90多个输出点,具体梯形图从略。
图10 对应图9的输入接线图
3 结束语
通过使用以上介绍的方法,可以大大提高PLC输入/输出点的利用效率,相当于扩展了PLC的输入/输出点的数量,相对地缩小了PLC的体积,节约了成本。