西门子6ES7231-7PB22-0XA8常备现货
激光系统
激光发生器由机器人或控制单元控制,被放置在激光安全防护罩外,为了节省占地面积,有时将其放在高处。连续Nd:YAG固体激光器1.06mm的波长和光纤传导适用于快速切割,一般用10~30m长的光纤将激光能量传送到工件表面。用金属加固的光纤导管非常坚韧耐用,可像普通的管线一样使用,唯一的限制是小弯曲半径约为200mm。
在机器人手臂和光纤末端连接的是激光切割头,它将光束聚焦到工件表面,同时保持与工件表面恒定的距离,并传递切割辅助气体。在切割平板的激光系统中,为了使切割头坚固且操作灵活,可将其做的较大。机器人系统进行的是三维切割,必须将切割头设计的轻而小,尤其在靠近切割喷嘴的部分,以便使它更靠近切割部位而不受干扰。另外,它还必须具备良好的密封,以防止灰尘和金属蒸气进入,同时尽量避免碰撞,以防止被损坏。
为了保持激光始终聚焦在工件表面上,在切割头喷嘴上使用了电容高度传感器,将指令传送给伺服系统。移动聚焦透镜和喷嘴与工件表面保持1mm的距离(如图1),浮动范围为25mm。
图1 切割头必须沿工件表面跟踪,使激光始终在工件表面聚焦以补偿工件的制造误差
工艺流程
液压成型管在每一侧都有许多部位需要切割,并在端口有一处切割,称为“端口切割”。 我们以此作为工艺流程的实例:步是将管液压成型为所需形状,将管送入激光机器人工作站里并将其立起,使里面积蓄的液体流出,否则液体会影响激光切割头上传感器的工作。当然干燥的管子是好的,但如果在切割位置附近没有过多积蓄的液体,湿的表面也可以接受。随后,管子被装入卡具准备切割,通常为一种变位装置。这种转动系统可以在一个管子转入激光防护罩内进行加工的同时,使另一个管子在加工区外装卡。将工件的每一面转动到切割头位置进行切割,既可以减少机器人的动作量及空程时间,也可以简化管线的运动路径(如图2)
图2 管子不动,切割头由机器人带动进行多面切割
在激光切割时,排尘装置从管子末端吸走切割中产生的金属蒸气和颗粒。在切割完成后,管子再次被垂直立起,倒掉里面的熔渣,后集中到废料收集器里。
激光器
激光切割的缝宽约为0.2~0.6mm,切割部位的尺寸受机器人臂长等因素的限制,而切速由激光功率和缝宽来决定,激光切割的速度曲线如图3。然而,激光切割速度并不是加工周期的唯一因素,机器人系统还必须花大量时间在不同的加工位置间移动,即“空程时间”。在整个加工周期中,机器人以快速度运动的空程时间要占50%,甚至更多,因此,在计算成本时还要考虑到这一问题。
图3 决定激光机器人单元加工周期的因素。以切割10个圆孔和3个型孔为例,上下料和装卡需20s
液压成型管激光切割系统配置的优化主要取决于速度、成本和质量,其中GSI激光器一个突出的功能是可以产生几百赫兹的脉冲输出,峰值功率高于连续波平均功率的2倍。这不仅可以产生更快的穿刺,在进行垂直于表面的切割时,还可以产生更快、更稳定的切割;对于半径小的圆进行切割,可以保证边缘切割的质量更好;对于反射性材料进行切割,可使速度更快,如铝和镀锌板。
对机器人的选择
机器人运动的精度、光滑度和重复性决定了切割精度。激光切割几毫米厚材料的精度为±35mm,包括机器人路径,精度为±250mm。机器人点对点的重复定位精度决定了实际加工点的位置,大约为±70mm。
一个合适的机器人应至少有六轴运动,并可再加一个或更多轴来旋转或移动长的工件。负载为激光切割头,通常小于10kg。
切割头
如前文所述,切割头应该小、窄、轻且快,并能耐受较脏的切割环境。大的金属氧化物颗粒和烟尘会损坏光学镜片和移动机构,而不锈钢结构和滑块密封结构会减少磨损,快换式、预准直的切割喷嘴和聚焦镜片还可快速更换。此外,新型切割头还可以防止碰撞。当在切割中产生飞溅和等离子云,或在进行斜角切割时,保持切割头与工件的固定距离至关重要,GSI的切割头可以做到这点,并可在加工中不断地进行自我校准。
将光纤、电缆和气管固定在一起,需远离切割区,以免工件在加工中受阻或使其在运动中扭曲,所有的管路都应安置在切割头的一侧。切割头为直角是好的,这样光纤可以沿机器人手臂固定,不仅可减少光纤在切割头上的扭曲,也可使更多的光纤用于工作区
随着机器人技术的发展,机器人技术在各行各业中得到了广泛的应用。机器人作为执行机构,具用控制方便,执行动作灵活,可以实现复杂的空间轨迹控制。特别适用于多品种,变批量的柔性化生产。
我公司以德国BAHR公司直角坐标机器人为核心产品,,开发了多种工业自动化产品,如涂胶机、点胶机、自动上下料机械手、码垛机、探伤检测设备。
直角坐标机器人在铝锭码垛机上的应用
直角坐标机器人在码垛机上的使用越来越多,其特点是负载范围大,小到几公斤,大到几吨;运行速度快,且速度可调整;动作灵活,可以完成复杂的码垛任务;可靠性高,维护简单。
要求:按层码垛;
运动空间为三维,四自由度运动。
行程:X方向2200mm, Y方向1500mm, Z方向1200mm, 水平旋转:+-900
能够和生产线融为一体,有良好的通讯。
大负载重量为150Kg,额定负载125Kg。层与层间成90度角交叉排放。
每垛共九层,垛高1000mm。
快码垛速度为1000mm/s,平均速度为500mm/s。
码垛精度:1mm
根据以上要求,我们设计了一台三坐标机器人。
机器人组成:
该机器人由安装架、机器人定位系统、伺服驱动系统、供胶系统及涂胶枪、控制系统及电控配电系统、安全防护装置等组成。
1、机器人安装架
因为该机器人码垛机的运动速度很快,起停状态对安装架有很大的冲击。安装架必须有非常好的刚性才能保证机器人运行的稳定。我们为此设计了焊接钢架结构作为支撑架。又因为铝厂有较大的灰尘水气,我们在机器人的上部分设计了铝架结构,并用玻璃罩将机器人罩住。使用铝型材的好处是重量轻。
2、机器人定位系统
机器人定位系统是整台设备的核心,为德国bahr公司产品,因运动速度快,而重复精度并不高, X,Y,Z三坐标均选择为同步齿形带传动,单坐标重复定位精度为0.1mm,快直线运动速度:1000mm/s。其中X坐标轴为两根长度为3000mm,跨度为2200mm的定位系统ELZ100,由同步传输器保证两根定位系统运动的同步,由一台3000W伺服电机驱动。出于驱动扭矩及惯量的匹配,需要配一台行星减速机。
Y轴选用ELZ100和ELR100双定位系统,之所以选者如此大截面的定位单元,主要是因为Y轴为双端支撑,中间悬空结构,如果选择的截面不够,将不能保证机器人运动的平稳性,机器人在高速运动时将发生振颤。ELZ100为主驱动结构,ELR100位辅助结构。两根定位单元并排使用,将Z轴夹在中间,能够很好的平衡负载,这种安装方式具有非常好的稳定性。两根定位系统由一台2500W伺服电机驱动,出于驱动扭矩及惯量的匹配,需要配一台行星减速机。
Z轴选用ELSD100双滑快全包围定位系统,牢固稳定。该产品是专为同时完成物体tisheng和旋转两个运动而设计的。该产品一般滑块固定而定位体作伸缩式运动,驱动定位体的伺服电机驱动和滑块安装在一起。该伺服电机因需要将物体快速tisheng,需要克服很大的重力和加速力,需要较大的功率才可以。
实际应用中我们选择了一台4000W带抱闸的伺服电机,匹配了一台一台行星减速机。
旋转轴与Z轴是集成在一起的,通过在Z轴定位体中心添加一根贯穿的长轴实现的。长轴的上端作为驱动端,与伺服电机安装在一起。长轴的下端作为负载端,用于安装物体。因物体较重,转动惯量较大,不能直接安装在驱动轴,必须加一台盘式减速机才能匹配。伺服电机的动力先由长轴传输到减速机再传输到负载,就实现了旋转负载的功能。
3、伺服驱动系统
该码垛机器人的选用具有Profibus 功能的伺服电机。每个运动轴配有一台伺服电机及一台减速机,四个运动轴,共四套伺服电机和四台减速机,其中垂直运动轴为带抱闸伺服电机。
4、机器抓手
该机械手选用德国菲施托气动机械手,压力可调,配备压力缓冲阀,使夹持动作平稳
抓手上装有感应机构,能够自动感知物体,并通知控制中心进行物体抓放。
5、控制系统
控制系统由大型PLC、触摸屏组成。该系统拥有强大的Profibus通讯功能。能够将数据实时传输给以太网,能够将控制指令以总线的方式发送给伺服系统,使整个的运动相当流畅。该系统可预置多种工件的程序,更换品种时可在触摸屏上调用相应程序。
6、安全防护装置
该机具有故障提示及报警功能,并且每次出现故障时都能准确的反映出故障具体位置,便于迅速排除故障,主要包括:机器人碰撞保护功能;工件安装到位检测;光幕安全保护。
1.前言:
漳山电厂位于山西省长治市,始建于2002年,目前拥有两台装机容量各为300MW的直接空冷机组。凝结水系统配装上海凯士比泵业有限公司制造的NLT350-400×6型凝结水泵,凝结水泵电机为湘潭电机厂制造的YLKS500-4型,高压变频器为北京利德华福电气技术有限公司制造的HARSVERT-A06/130系列。目前在已投运的大型火电机组中,凝结水泵采用容量、一用一备的配备模式,除氧器水位依靠上水调门开度控制,节流损失大。随着高压变频调速装置可靠性的tigao,应用领域不断扩大,众多发电企业对凝结水泵进行了变频改造。在实际改造中,对控制方案的要求主要是变频凝结水泵运行中事故跳闸,备用泵工频联启后凝结水压力陡增,除氧器水位、凝结水其它用户的控制必须在要求范围内波动。本文就山西漳山发电有限责任公司#2机组凝结水泵变频改造的实际情况,对上述问题作一番探讨。
2.凝结水泵的运行工况
在汽轮机低压缸内做功的蒸汽在空冷岛冷却凝结之后,集中在凝结水箱中,凝结水系统的作用是通过凝结水泵及时的把凝结水送至除氧器中,维持除氧器水位平衡。保证凝结水泵连续、稳定运行是保障电厂发电机组安全、经济生产的重要环节之一,凝结水系统如图1所示。
图1:凝结水系统图
凝结水泵电机为6kV/1120kW电机,设计时有一定裕量,每台机组配备二台凝结水泵,一台运行,一台备用。通过对机组凝结水系统和凝结水泵运行方式、动力系统结构的研究分析,提出一拖二自动工/变频切换控制方案。由于凝结水泵属一用一备运行方式,因此采用一拖二方案可以tigao变频设备的利用率,保证系统具有良好的节能效果。另一方面,凝结水泵具有定期设备轮换的制度,为降低系统操作的难度,系统采用高压开关等自动切换装置,从而,使得系统操作简便、安全可靠。具体系统结构原理如图2所示:
图2:系统结构原理图
凝结水泵变频改造前,除氧器水位是通过改变凝结水泵出口调整门的开度进行的,调节线性度差,调整门存在较大的节流损失。同时由于频繁的对调整门进行操作,导致阀门的可靠性下降,影响机组的稳定运行(我公司1#机组曾发生三次调整门机械故障)。
改造为高压变频器后,凝结水泵出口阀门处于全开位置(同时根据现场实际情况可将旁路门打开,可进一步降低凝结水系统的节流损失),仅在倒泵过程中由凝结水母管调整门来控制除氧器水位,正常运行时通过调节变频器的输出频率改变凝结水泵转速,达到调节出口liuliang控制除氧器水位的目的,满足运行工况的要求,图3为凝结水控制方案。
图3:凝结水控制系统图
在图3中,采用双回路控制,主要是考虑调整门调节特性与变频器存在较大差异,单一控制回路的调节效果不好;通过变频运行后的实际效果,这种控制回路设计调节特性很好,两套回路切换平稳。
3 改造中遇到的问题和解决的办法
(1)高压变频调速凝结水泵运行时上水调整门打开,利用改变凝结水泵的转速调节除氧器水位造成凝结水压力较低,大不超过2.8MPa。运行中凝结水压力随负荷降低而下降,为了保证其它设备所需凝结水的压力,设定变频调速系统的低转速为30Hz,对应凝结水泵的出口压力为1.2Mpa,修改减温水压力低保护关低旁逻辑。
(2)由于变频凝结水泵用改变转速调节使得凝结水压力低,而定速凝结水泵仍为上水门调整、凝结水压力很高,运行一旦发生变频凝结水泵跳闸备用定速凝结水泵启动后凝结水压力、liuliang突然增大对除氧器水位造成很大的影响。针对此问题将控制逻辑修改为当变频泵或者变频泵高压开关事故跳闸,且发出联启定速泵的指令时,程序发出一个与汽轮机调速级压力具有函数关系的预置指令加到除氧器上水调整门,立即将上水调整门关至一定位置并且程序强制将调整门投入“自动”进行调节除氧器水位,图4为#21凝结水泵变频跳闸后,#22备用工频凝结水泵联锁启动后水位与除氧器水位调整门的变化趋势图,在切换过程中,除氧器水位波动在正负20mm以内。
图4:切换过程中水位与阀门动作趋势
(3)运行变频凝结水泵跳闸备用定速凝结水泵联锁启动后凝结水压力突然升高对凝结水供其它辅助设备影响很大,特别是给水泵机械密封冷却水系统,由于给水泵机械密封冷却水差压一般维持在0.1MPa。针对此问题在给水泵机械密封冷却水调整门上预置一个与汽轮机调速级压力具有函数关系的指令,当备用工频凝结水泵联锁启动后将该指令输出至给水泵机械密封冷却水调整门,延时一段时间后系统切换至给水泵机械密封水差压自动调整回路。
(4)凝结水泵再循环调整门是为了保证凝结水系统在低liuliang时凝结水泵在安全工作区内运行的,该控制回路的被调量是凝结水泵出口母管压力,当凝结水泵采用变频调速系统后,转速越低,出口压力越低,为了保证凝结水泵的安全,防止泵体汽蚀,在再循环调整门的控制指令输出上叠加一个与除氧器水位调整门具有函数关系的指令,当在变频运行时,控制再循环调整门开度。
4.改造后的运行措施
改造后变频凝结水泵长期运行,定速凝结水泵只作备用。为了保证变频凝结水泵安全的运行,定速凝结水泵处于良好的备用,以及凝结水供给其它辅助设备的安全运行,制定以下运行措施。
(1)正常运行时变频凝结水泵运行、定速凝结水泵投入备用,上水调整门开度控制在90%—97%,利用变频凝结水泵的变频器对除氧器水位进行自动调节。低负荷时可以关小上水调整门维持凝结水压力不低于1.2 Mpa,凝结水泵转速不低于900r/min,确保变频凝结水泵和凝结水供给其它辅助设备的安全运行。
(2)每月定期对凝结水泵进行切换运行,以保证备用凝结水泵处于良好状态。
(3)机组启动、停止过程中可以将变频凝结水泵转速控制在某一值,采用除氧器水位调整门调节,不但使除氧器水位稳定而且可以保证其他辅助设备有足够压力的冷却水,如低压旁路减温水、疏水扩容器减温喷水、低压缸减温喷水等。
5.节能效果(变频器运行后检测)
(1)节约厂用电效果显著
现场截取变频改造前后的2#机组实际运行数据记录,对本机改造前后的电流进行比较,可以比较直观的反映进行变频改造后节能情况,如表1所示。
表1:变频改造前后电流变化
图5:改造前后电流变化趋势图
表2是某半个月的电能统计,做一个同类机组的横向比较,可以看出凝泵用电减少许多。
表2:节电统计
以每台机组年运行300天计算,使用变频器可节约厂用电242万kW•h,按照0.25元/kW•h计算,折合人民币60.5万元。
(2)减少电机启动时的电流冲击
电机直接启动时的大启动电流为额定电流的7倍;星角启动为4-5倍;电机软启动器也要达到2.5倍。观察变频器启动的负荷曲线,可以发现它启动时基本没有冲击,电流从零开始,仅是随着转速增加而上升,不管怎样都不会超过额定电流。因此凝泵变频运行解决了电机启动时的大电流冲击问题,消除了大启动电流对电机、传动系统和主机的冲击应力,大大降低日常的维护保养费用,图6为凝结水泵变频启动电流趋势图(初始转速900r/min)。
图6:凝结水泵变频启动电流趋势图
(3)延长设备寿命
使用变频器可使电机转速变化沿凝泵的加减速特性曲线变化,没有应力负载作用于轴承上,延长了轴承的寿命。同时有关数据说明,机械寿命与转速的倒数成正比,降低凝泵转速可成倍地tigao凝泵寿命,凝泵使用费用自然就降低了。
(4)降低噪音
我公司凝结水泵改用变频器后,降低水泵转速运行的同时,噪音大幅度地降低,当转速降低60%时,凝结水泵附近1.5m噪音水平测试85dB,比工频运行时的110dB减少25dB。同时消除了停车和启动时的打滑和尖啸声,克服了由于调整门线性度不好,调节品质差,引起管道锤击和共振,造成凝结水系统上水管道强烈震动的缺陷,凝结水泵的运行工况得到明显改善。
6.总结
高压变频调速系统在凝结水系统中的成功应用,以其显著的节能效果和良好的系统响应和控制品质,充分说明在火电厂发电机组主辅机设备中采用高压变频调速技术具有广阔的应用前景和拓展空间,对tigao企业竞争力、降低发电成本具有积极意义。