西门子模块6ES7232-0HB22-0XA8规格参数
一、前言
在原油开采过程中,初次采油一般依靠地底压力让原油自喷而出;此后由于地下压力减小,不得不往地下注水将油驱出,称二次采油。当前,中国多数油田处于二次采油晚期,每百吨采出液体中,含水量高达95%,综合原油采收率只有30%多一些,60%多的石油仍然留在地下无法采出。在实际中多数采用的是三次采油。
三次采油概述:从地面注入各种驱油介质-各种化学物质、溶剂、热载体、各种物理方法等进行生产的阶段,采收率约为50%——70%。是以开采二次采油阶段剩余为目标所采取的各种增加原油产量的措施,包括各种物理及化学驱油措施。tigao原油采收率是指为增加二次采油阶段剩余油产量的各种措施,其意义更加广泛;还包括如单井吞吐、近井地带处理以及水平井开采技术等。聚合物驱技术是隶属于三次采油阶段的"tigao采收率" 技术中的一种强化采油工艺技术,通常是在水驱开发基础上进行的,所以又称为改善水驱,是向地层注入高粘度的聚合物溶液来大大降低流度比、扩大波及体积、tigao驱油效率从而tigao采收率的驱油工艺。
聚合物驱三次采油比水驱tigao采收率100%以上,是东部老油田高含水后期保持稳产的重要措施之一。大庆油田、大港油田、胜利油田,河南油田开展了聚合物驱油,大庆油田聚合物驱年产油量已达1000万吨以上。聚合物驱油技术对保持油田稳产起到了重要的作用。尤其是在石油勘探新增储量十分有限的老油田,因面临后备储量严重不足、油田产油量逐年递减、井网加密增加可采储量十分有限、高含水阶段措施难度极大,其增油量已无法弥补油田的递减的情况下,对于解决“如何保持原油生产的持续稳产与高产”这一难题时通常优先考虑采取的。因此,迅猛发展的三次采油技术,为老油田的稳产接替和tigao采收率展开了广阔的前景,进行三次采油、tigao原油采收率,是减缓中国多数油田衰老速度、维持中国原油稳产、减少中国对国外原油依赖程度的战略要求。将变频调速技术应用于三次采油技术不但tigao了产量,而且具有环保和节能性,在油田推广具有深远的意义。
二、变频调速的工作原理
变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n =60× f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数),通过改变电动机工作电源频率达到改变电机转速的目的;通过改变定子供电频率f,就可以改变电机转数n,变频后的交流电作用于电机,改变电机转数进而改变电机输出功率;在调节过程中,电机转速大部分时间里都低于额定转速,在频率调节范围以及改变频率后电机的特性等方面,都具有明显的优势。
liuliang计在获取liuliang信号后,送到PID调节器,再由PID送入变频器,由变频器输出的信号可以显示在PID面板上,对PID输出进行设定,终信号去控制电机的转速,既而影响liuliang,形成了一个闭环控制系统回路。不但控制精度高、运行平稳,节能效果也非常明显。
结合PID调节能大大减少电机启动次数。现场调节注聚量只需对PID进行设定,根剧配注方案,对PID输出进行设定只需一个人几分钟就可完成,方便快捷、安全可靠,减轻了工人的劳动强度,tigao了工作效率。
采用变频调速技术改变泵的转速来控制现场过程参数,要比采用阀门调节更为节能,设备运行工况也将得到明显改善。闭环控制框图如下:
三、变频调速技术在聚和物驱油系统中现场应用效果分析
1.2006年4月我厂在古城油田的B123区块建成并投用聚和物驱油系统。注聚系统90%以上的用电量消耗在注聚泵电机上。B123区注聚站有注聚泵14台。2006年5月7日——-5月22日设备调试运行期间,对G2505、 G2506、 G2705、 B123-3、 G2407、 5口井进行了现场测试,在注入压力,注入量都不变的情况下。这5口井用工频运行平均单井有功功率为9.86KW,改为变频运行平均单井有功功率为7.98KW,有功功率降低了1.88KW,平均单井日节电45.09KW.H,节电效果明显。从B123区注聚站应用的14台变频器使用情况分析,平均单井日节电45.09KW.H,全站14台变频器每年可节电23.05万KW/H。电费按0.72元/KW.H计算,全站14台变频器每年可节约电费16.59万元。
2.注聚泵采用工频运行依靠调节旁通阀门的开度控制泵排量,无法有效地解决注聚泵排量和注聚区块实际需要注入量的矛盾,无法保证注入浓度和实现聚合物溶液的连续注入。
将变频调速技术,liuliang计及PID控制技术结合应用在注聚泵上;实现了自动控制,运行平稳,tigao了注入聚合物设计量和注聚区块实际需要量的jingque注入计量,保证了聚合物注入浓度和聚合物溶液的连续注入;tigao了注聚效率,为降水增产打下了基础。
3.电机直接启动,启动冲击电流大,机械冲击大、电气保护差;这对管路、泵体和阀门的密封性能形成威胁和破坏;影响设备使用寿命,增加了设备的故障率。而变频控制稳定的软起动功能降低了电机起动电流,减小了起动冲击电流对供电电网的影响,起到了优化电网的作用。变频器安装使用后它的软起动功能减缓了泵腔、阀体的磨损及泵体、电机等工艺设备因振动而带来的隐患和损耗,延长了设备使用寿命;减少了设备故障停机率。采用变频调速技术设备机械磨损小,噪音明显下降;减少了阀门、泵体、电机等相关设备的维护、修理、更换等工作量,降低了工人的劳动强度。
4.该系统经过半年多的运行,变频器运行稳定,已有20多口井受益,部分井综合含水下降1%——4%,产量有所上升。同时使设备维护、维修费用居高不下,能源浪费和设备损耗等;困扰注聚站节能降耗、降低生产成本的难题得到解决。
四、结束语
虽然变频器初次安装费用较高,但是变频调速技术在改善设备运行工况,tigao系统的安全性、可靠性、延长设备使用寿命、降低劳动强度、tigao工作效率、节能降耗等方面有着很大的潜在的优势。我厂是能耗单位,因此,随着应用范围的不断扩大,其潜在的综合效益将会得到充分的体现。
<table width="ඪ%"">
0 引言 试验时,TF1及TF2的相序必须一致,被试电机由TF1供电启动。将TF1调整到相当于额定频率的转速,并将TF1励磁调节到使其端电压约为被试电机的额定电压,再在TF2未加励磁的情况下,用D2 拖动TF2,将其转速调到相当于辅助频率的转速。增大TF2的励磁电流时,被试电机的电流随之增大,同时调节TF1及TF2的励磁电流,就可以将被试电机调节到在额定 并周期性地加速与减速。因此,在气隙磁场转速变化的一个周期内,转子转速时而低于旋转磁场转速作电动机运行,从电网吸取能量;转子转速时而高于旋转 叠频电压 叠频试验时,只须直接设定U1、U2、f1、f2,即可得到需要的输出电压和电流。传统叠频法试验时,需要不断的人工调整主、幅电源的电压和频率才能将定子电压及电流调整到电机额定电压及额定电流,稳定性和jingque性都很差。采用专用变频电源后,将调整方法简化为直接设定电压与电流。变频电源首先输出主频率和主电压,此时电流为空载电流,然后逐步加大辅助电源幅度,同时自动减小主电源幅度,随时保证输出电压为额定电压,当电流幅度达到额定电流后,自动保持输出为额定值。 4 结语 |
1 引言
废水生物处理技术中的批式活性污泥法又称SBR法,是一种简快速且低耗的污水处理工艺,具有工艺简单、效率高、脱氢除磷效果好,防止污泥膨胀性能强,耐冲击负荷和处理能力强等优点,非常适用于水质变化大的中小城镇的生活污水处理,以及易生物降解的工业废水处理。
目前由于化学需氧量COD浓度在线检测仪器的出现,将COD浓度作为重要的工艺参数,系统通过在线检测COD的浓度值来调节曝气量,以保证出水质量,节省运行费用。
2 SBR法污水处理过程分析
图1所示为活性污泥处理流程示意图。SBR废水处理法初次沉淀池、曝气池、二次沉淀池、污泥回流和剩余污泥排放几个系统组成。初次沉淀池用以去除污水中原生悬浮物,悬浮物少时可不设置。污水和回流的活性污泥一起进入曝气池形成混合液,通过罗茨风机充入空气,使混合液得到足够的搅拌而呈悬浮状态,然后流入沉淀池。混合液中的悬浮固体在沉淀池中沉淀下来和水分离,流出沉淀池的净化水。沉淀池中的污泥大部分回流,成为回流污泥。
传统的控制方法是时间程序控制,即按照规定的时间和顺序进行:
· 充水(打开进水电动阀):7h
· 曝气(开启罗茨风机):1.75h
· 搅拌(接通搅拌电机):1.25h
· 沉淀:1.5h
· 排水(打开电磁阀):0.5h
从充水开始到排水结束为一个周期。在一个周期内,通过曝气、停气使充氧/缺氧状态相互交替进行。在分解污水中含碳化合物(以COD为代表)的同时,相继进行含氮化合物的硝化和反硝化,终达到脱碳、脱氨和脱氮的目的。
一般情况下,采用每天执行两周期(12h / 周期),但是,工业污水中有机物的浓度往往是随时间变化的,如果按固定的反应时间控制SBR法污水处理系统的运行,则既浪费能源又容易发生污泥膨胀。如时间设置不合适,还将影响处理效果。
3 曝气量的变频调速控制设计
化学需氧量COD是一个重要的工艺参数,如控制系统在污水处理过程中,在线检测COD的值来调节曝气量,使整个反应过程的化学需氧量COD处于适当的范围,这样既能保证出水质量,又能节省运行费用。
图2为一种西门子变频器与PLC相结合实现PID调节的变频调速的风机控制系统,其中EM235为PLC模拟量I/O扩展模块。其工作过程是:系统在线检测的COD值,送入PLC模块后,进行PID的运算,其模拟量输出作为变频器的输入,控制变频调速,来达到调整风机转速,从而实现曝气量的调节控制。
图3给出了本例实现PID控制的流程图。
4 变频调速的节电分析
由图1可知,调节曝气量的大小,可采用调节风门控制风量和调节风机转速控制风量两种方法。此两种方法相比,后者有着明显的节电效果,其原理图如图4所示。
图中,曲线1为风机在恒速下的风压-风量(H-Q)特性曲线;曲线2为恒速下的功率一风量(Ps一Q)特性曲线;曲线3为管网风阻特性(风门全开)。
设风机在设计时工作在A点,效率高,此时输出风量Q为,轴功率为Ps1,与Ql、H1的乘积成正比,即P s1与AH1OQ1所包围的面积成正比。
当需要调节风量时,例如,所需风量从减少到额定风量的50%,即从Q1减少到Q2时,如采用调节风门的方法来调节风量,使管网阻力曲线由曲线3变为曲线4。就是说,减小风门开度增加了管网阻力。此时,系统的工作点由原来的A点移至B点。可以看出,风量虽然降低了,但风压增加了,轴功率Ps2与面积BH2 OQ2成正比,它与Ps1相比,减少不多。
如果采用调节转速来调节风量的方法,风机转速由原来的n1降到n2。根据风机参数的比例定律,可以画出在转速n2下的风压一风量(H—Q)特性曲线5,风机工作在C点。可见,在满足同样风量Q2的情况下,风压将大幅度降低到H3,轴功率Ps2(与面积CH3OQ2成正比)也明显降低。所节约的功率与面积AH1OQ1和CH3OQ2之差成正比。由此可见,用调速的方法来减少风量的经济效益是十分显著的。
由流体力学可知,风量Q与转速n的一次方成正比,风压H与转速n的平方成正比,轴功率Ps与转速n的三次方成正比。即:
Q∝n H∝n2 Ps∝n3
当所需风量减少,风机转速降低时,其功率按转速的三次方下降。如所需风量为额定风量的80%,则转速也下降为额定转速的80%,而轴功率下降为额定功率的51.2%;当所需风量为额定风量的50%时,轴功率可以下降为额定功率的12.5%。当然,转速降低时,效率也会有所降低,同时还应考虑控制装置的附加损耗等影响。即使如此,这种方法的节电效果也是非常可观的。另一方面,使用通用变频器来改变转速后,当风机转速下调10%时,则风机输出功率下降到额定功率的73%;当风机转速下调20%时,则风机输出功率下降到额定功率的51%。可见应用变频器技术调速又比普通调速来控制曝气量的大小其节电效果更加显著。
5 结束语
本例采用变频调速技术与PLC相结合进行曝气量的调节控制,既保留了PLC控制系统可靠、灵活、适应能力强等特点,又tigao了控制系统的智能化程度。
本文作者的创新点在于,利用了变频器与PLC相结合,对风机的曝气量实现了jingque的PID调节控制。这种控制方法不仅tigao了污水处理系统的可靠性、节约了能源,而且对于进一步实现各种活性污泥法的实时控制提供了一较为理想的控制方案。