浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7231-0HC22-0XA8产品特点

西门子模块6ES7231-0HC22-0XA8产品特点

1 引言
副井提升机信号及综合保护系统,是副井提升系统的重要组成部分。该系统工作性能的优劣,直接影响到提升机的安全运行。某煤矿副井提升机分为两套提升绞车,一套为双罐笼提升-双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业;另一套为带平衡锤的单罐笼提升—双层提矸(换层操作)、双层提人(不换层,设人员上下桥台)及其它辅助作业。原信号系统中的井口闭锁信号及打点信号由于器件的老化等原因,动作迟缓或误动作。同时,可编程序控制器的高速发展和成熟应用,也为副井提升信号系统的改造提供了良好的前提条件。因此,从满足现场需要和操作方便灵活的角度出发,应用可编程控制器对其进行改造。

2 三菱FX_2N可编程控制器
三菱FX_2N系列可编程控制器是小型化,高速度,高性能的产品,是FX系列中次的超小型程序装置。除输入出16~25点的独立用途外,还可以适用于在多个基本组件间的连接,模拟控制,定位控制等特殊用途,是一套可以满足多样化广泛需要的PLC。它具有如下特点:
l 系统配置既固定又灵活
在基本单元上连接扩展单元或扩展模块,可进行16--256点的灵活输入输出组合。
l 备有可自由选择,丰富的品种
可选用16/32/48/64/80/128点的主机,可以采用小8点的扩展模块进行扩展。
可根据电源及输出形式,自由选择。
l 令人放心的高性能
程序容量:内置800步RAM(可输入注释)可使用存储盒,大可扩充至16k步。
l 编程简单
本系统采用三菱的FX2N系列PLC实现上下井口的各种操作。上井口为FX_2N128MR,下井口为FX_2N80MR,车房为FX_2N48MR除紧停信号单独外的各种操作及信号的处理均由可编程控制器完成

3 系统构成


系统框图如图1所示,由车房显示系统、上井口信号操作系统和下井口信号操作系统等三部分组成。 】

[NextPage]
3.1 车房显示系统
车房显示系统主要完成提升过程中的各种信号显示,包括提人、提物、急停、换层、检修等的汉字显示,快上、快下、慢上、慢下、停车等的汉字和数字显示,三次提升信号所对应的数字记忆,提升钩数的累计显示等等。对快上、快下、慢上、慢下、停车的五种信号同时具有与信号数字相对应的音响信号,如打点信号为4,则对应有四次音响信号。在紧急停车时具有上井口、下井口、车房的全线音响报警信号。
各种与绞车控制回路闭锁的信号集中到车房显示系统的控制柜中,再分别接入各控制回路,便于维护和检修。
3.2 上井口信号操作系统
上井口信号操作系统的功能主要是根据提升任务的需要向车房发出相应的打点信号及完成相应功能的转换,如提人、提物、换层、检修等。根据煤矿安全规程要求,在提升过程中,下井口的信号必须由上井口转发,即每次提升开始,下井口首先向上井口发出打点信号,上井口再发出相应的信号,并传至车房,同时在操作面板上显示相应的数字和发出相应次数的音响信号。如果上井口发出的信号与下井口不一致,信号将不能发出,操作面板上也相应显示和音响信号。但当上井口下放人员时,不论下井口发出什么样的提升信号,均服从于提人,即上井口可以将提人信号直接发至车房,实施提人操作。在本系统中不论是提人还是提物,只有提人、提物转换开关的位置选对,打点信号才有效。一旦信号正确发出,除紧急停车信号外,系统将闭锁各种信号,确保提升的安全。当需要换层时,只要将换层转换开关置于换层位置,提升机将按照换层所设定的速度运行。在系统检修时,将检修转换开关置于检修位置,此时提升机将按照检修速度运行。
上井口发出的各种信号均传至车房,为司机提供开车信号。在提升信号没有发出时,绞车开不了车。在信号系统中还设置了提升方向的闭锁,绞车只能按正确的方向开车。
在系统中如果上下井口的闭锁和操车信号异常,显示屏上将出现相应的闪光指示,以便及时的发现问题和解决问题。为了方便上下井口的联络,系统中设置了联络信号操作按钮,通过此按钮实现各种联络。
当信号系统的PLC检修或故障时,本系统可以通过设置的备用信号系统发出各种开车信号,确保提升系统的正常运行。
3.3 下井口信号操作系统
下井口信号操作系统的功能基本与上井口信号操作系统的功能一样,不同之处在于:
(1) 下井口的信号只能传至上井口,而不能直接发至车房。
(2) 当下井口发出提人信号时,上井口只能发出提人信号。
当需要紧急停车时,上下井口均可通过紧急停车开关,发出全线紧停声光信号。

0 引言


组合机床是针对某些特定工件,按特定工序进行批量加工的专用设备。随着PLC的广泛应用和机床电控技术的不断发展,利用PLC实现对组合机床的自动控制,无疑是今后的发展方向,而针对这种控制的PLC程序设计也显得尤为重要。这种控制属于顺序逻辑控制,有多种编程方法与语言可供选择,编程中也有一些技巧与规律可循。下面较为详细的介绍一组合机床自动控制的PLC程序设计实例。

1 实例工作过程及程序设计思路

本文给出的实例是一台立卧三面镗床,有右头、左头及上头三个工作头,有自动循环(三头同时加工)和单头调整四种不同工况。三头同时加工时,一个自动工作循环过程如图1所示。其特点是多头同时加工和多工步,体现在控制要求上是:工步之间转换条件较复杂,存在并行同步问题,记忆、连锁等问题也较多。鉴于此,应采用顺序功能流程图的程序设计方法:首先根据对工作过程的分析对各步、转换条件及路径进行全面定义,确定各步的动作,然后按照控制要求,运用指令对各步和转换进行编程。




图1 自动工作循环过程


步的定义可由顺序功能流程图描述,图2所示为本例主功能流程图。它从功能入手,以功能为主线,将生产过程分解为若干个独立的连续阶段(步) 。

分解的各步可以是一个实际的顺序步,例如步1,对应的动作是起动主泵电机,也可以是生产过程的一个阶段,例如步2为自动工作过程,其功能流程图见图3。

从这两个功能流程图可以看到,它将各步的操作、转换条件以及步的推进过程简单明了地显示出来了,并体现出了具有单序列、选择序列、并行序列几种基本结构。例如步25至步27是单序列,实现了多工序的顺序工作;步12、步13、步14及步15构成了四分支选择序列结构,可实现三头同时加工、右头调整、上头调整、左头调整四种工况的选择;而步28至步30、步31至步34、步35至步38则形成了三个并行的分支,实现的是三头同时加工过程;步21、步22与步23、步24间也是并行关系,实现了工件上位降中位与主轴定位两个工序并行工作。该两个并行的过程间有同步问题,即步21 (工件上位降中位)与步23 (主轴定位)同时开始,但不同时结束,需要用并行序列的合并来同步(等待两个动作均结束) ,使之同时转入步25。三头同时加工时也有此问题。在顺序功能流程图的描述中,注意要说明各步间的转换条件、各步对应的命令与动作及相应运行状态。




图2 主功能流程图

[NextPage]


2 程序实现方法

接下来的第二步则需要用某种编程语言的指令对上述功能流程图进行编程,以实现其中的功能和操作。

目前已有提供直接功能流程图编程的PLC,但对于不具有该编程语言的PLC,可采用仿功能流程图编程的方法,这里所说的是采用梯形图、指令表等常见的编程语言实现编程的方法。根据功能流程图的描述,可将该复杂的结构分解为单序列、选择序列、并行序列几种基本环节,找出这些基本环节各自的规律、编程规则,化整为零分块编程。这样程序为结构化模块形式,编程的思路更清楚,程序设计更为规范。各种基本环节的程序实现可采用通用逻辑指令、置位与复位指令或移位寄存器,这几种实现方法有一个共性就是要考虑如何激活一步、保持该步、又如何停止一步,如果用步进指令来实现,这些问题就无需考虑,程序也简洁的多。下面给出运用步进指令实现的对图2、图3的编程,并就关键问题进行分析。

图4为主功能流程图的梯形图,图5为自动工作功能流程图的梯形图(只给出了一部分) 。先看步25到步27的单序列,其各步的控制规律为:若某步为活动时,则当它与下步间的转换条件一旦成立,该步即变为非活动步,而下一步成为活动步。当步为活动时,相应的动作和命令才执行,非活动步相应的动作和命令不被执行。这样步25是活动步时,会发右头快进指令(使Y442得电) ,直到快进到位(行程开关SQ4受压,转换条件X412满足) ,步25成为非活动步,右头停止快进(使Y442失电) ,步26成为活动步,工件开始从中位降下位(使Y447、Y552得电) ⋯⋯。选择序列各步的控制规律为:分支时,若一个前级步是活动的,则当它与多个选择后续步之间的哪个转换条件满足,哪个后续步就成为活动步,而前级步成为非活动步。合并时,若多个选择前级步之一是活动的,当该活动步与一个后续步之间的转换条件满足,则后续步就成为活动步,前级步成为非活动步。实例中步11为活动步时,四个分支的转换条件哪个成立则哪个分支步就会成为活动步。如果按动自动加工起动按钮,使转换条件X403满足,则会进入步12,开始自动加工过程,直到转换条件X424满足,分支合并循环到初始步,开始一个新的轮回。按照控制要求,整个加工过程中主泵电机需要一直处于运转状态,所以在步11中使用了置位Y430指令,而在步11成为非活动步后, Y430并不失电。并行序列各步的控制规律为:分支时,若一个前级步是活动的,则当转换条件满足,则多个并行的后续步同时成为活动步,而前级步成为非活动步。合并时,若多个并行的前级步均是活动的,当转换条件满足,则一个后续步成为活动步,多个并行的前级步同步成为非活动的。实例中步20为活动步时,执行装件指令,装件完毕,转换条件X425满足,步21、步23同时成为活动步,即停止装件,开始工件上位降中位和主轴定位动作。由于这两个动作不同时结束,因此插入了两个没有动作和命令的空步——步22、步24 (梯形图中相应的步进接点没有连接输出继电器) ,用于分别停止两个前级步,结束相应的动作,并等待两个动作均停止的时刻,一旦时刻来到(条件X410·X427满足) ,两并行步合并转换到步25。三头同时加工时,也有类似的同步问题,在此不再赘述。




图3 自动工作功能流程图


3 结束语

通过本PLC程序设计实例可以看出,采用顺序功能流程图的程序设计方法有以下优点:a. 功能流程图与生产过程结合紧密,设计思路明确,系统操作含义清晰,有利于工艺和自控技术、设计人员的思想沟通;b. 功能流程图可以向设计者提供规律的控制问题描述方法,就易于得到相应的编程方式,易于设计出任意复杂的控制程序,并使编程更趋于规范化、标准化。




图4 主功能流程图的梯形图

[NextPage]





图5 自动工作功能流程图的梯形图(部分)

典型配置
   SIMATIC S7 PLC 是全集成自动化(TIA) 的核心。在高效的操作处理、灵活的通讯扩展以及强大的控制能力的帮助下,此系统提供了控制、网络通讯、IT 服务等功能。因此,SIMATIC S7 PLC 才能成为全球市场占有率高的PLC 产品。中控室采用冗余服务器软件进行监控,完成设备监控、回路调节、生产信息管理、报警、报表、权限控制等功能。所有的组态及维护工作只需在服务器端进行即可。如选用Web服务器选件,客户机端只需有浏览器软件即可完成监控功能。
全系列PLC —高度可靠,功能强大
• SIMATIC S7 PLC 可以在不同的环境条件下安装和运行,例如热带干燥气候、低温气候、热带潮湿气候等等。作为全集成自动化的一部分,它们拥有很长的产品寿命。
• SIMATIC S7 PLC 满足以下标准:DIN、EN、IEC、UL认证、CSA 认证、Class FM1 Sec.2;A、B、C、D 组,温度组别T4(<135C) 以及美国、英国、法国、德国和挪威的海军分级认证。
• 为了使您的生产过程能够正常运行,可以采用软件冗余( 热备),或者采用硬件冗余( 热备)。冗余的I/O 和PROFIBUS 构成了高可用性功能。
• 先进的PROFIBUS-DP 总线可实现的分布式控制,PROFIBUS-PA 总线可连接智能仪表,只需一根总线即可完成设备供电及信息采集工作。
WinCC —过程可视化和IT 平台
   WinCC 是享有盛誉的、在全球及中国有极高市场占有率的SCADA 监控软件,它提供用于SCADA 监控的基本系统和相应的选件。在水泥行业中,我们推荐使用WinCC 开发版用于工程师站组态画面和开发其他功能,使用WinCC 运行版用于操作员站的监控。在操作员站较多的情况下,采用冗余服务器/ 客户机结构;为了降低成本和更好地为领导层提供决策依据,将一台WinCC 客户机作为Web 服务器,使本局域网内其他计算机可以方便的浏览生产数据和设备数据,这种应用甚至可以延伸到Internet。


展开全文
优质商家推荐 拨打电话