浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7214-2BD23-0XB8正规授权

1 引言
随着中央提出大力发展清洁能源的建设并为激励农村和边远山区的进一步发展,国家对小水电事业给予越来越多的关注。我国的小型水电站在近20年得到了极为迅速的发展,其中以万千瓦以下的小型水电站居多。对这些小型水电站的监控保护和自动控制也显得尤为重要。本文主要讲述了三菱FX2N系列PLC在水电站有功调节中的应用

水电站的有功调节通常是通过调速器实现的,但当水轮机组并入电网运行时,对于单台发电机来说转速反馈几乎不起作用。近年来,随着自动发电控制(AGC)的需要,有功功率在控制系统中的调节品质已成为当前电力系统自动化领域的突出问题。

2 系统组成
本系统中控制的两台水轮发电机型号为SFW2500-10/1730、6.3kV/286A。本系统采用分层分布式布局,配置如图1所示。主要由2个机组监控屏、发电机保护屏、公用监控屏、主编线路保护屏和电量屏构成。通讯采用高速以太网与上级调度、操作员工作站进行通讯。其中公用监控屏由可编程控制器(由三菱FX2N-80MR和2个FX0N-16EX扩展模块组成)、自动准同期装置、触摸屏、电力测控仪和逆变电源组成,在公用监控屏中实现对发电机的有功调节。


图1 系统配置图


3 控制要求
在电力系统中,频率与电压是电能的2个主要质量指标,电力系统中的频率变化的主要原因是由于有功功率不平衡引起的。系统的负荷经常发生变化,要保持系统的频率为额定值,就必须使发送的功率不断跟随着负荷的变动,时刻保持整个系统有功功率的平衡。否则,系统的频率就会大起大落,保证不了电能的质量,甚至会造成事故与损失。

当负荷吸取的有功功率下降时,频率增高;当负荷吸取的有功功率增高时,频率降低,即负荷调节效应。由于负荷调节效应的存在,当电力系统中因功率平衡破坏而引起频率变化时,负荷功率随之的变化引起补偿作用。如系统中因有功功率缺额而引起频率下降时,相应的负荷功率也随之减小,能补偿一些有功功率缺额,有可能使系统稳定在一个较低的频率上运行。如果没有负荷调节效应,当出现有功功率缺额系统频率下降时,功率缺额无法得到补偿,就不会达到新的有功功率平衡,频率会一直下降,直到系统瓦解为止。
频率和有功功率自动调节的方法主要有:
(1) 利用机组调速器的调节特性进行调频;
(2) 根据频率瞬时偏差,按比例分配负荷,构成虚有差调节频率和负荷的方法;
(3) 按频率积分偏差调节频率,满足“等微增率”原则分配负荷;
(4) 按给定负荷曲线调节有功功率(本文所介绍的是按给定负荷曲线调节有功功率)。
电站的调节系统应该使总功率等于负荷曲线给定的功率。而机组之间则按“等微增率”原则经济分配负荷。如果系统频率偏差不超过调频电站所能补偿的范围,则调功电站的调节系统对频率偏差不应作出任何响应。如果系统运行工况发生了变化,出现了较大的频率偏差则调频电站无力完全补偿偏差值,那么调功电站的自动调节装置应该作用于各台机组的调速器,使之改变各台机组的有功出力来帮助恢复系统频率。


图2 功率与频率关系曲线


图2示出功率与频率的关系曲线。在死区±Δfmax范围内,频率偏差信号Δf不起作用,此时电站的实际功率 与给定的总功率PG之间的偏差ΔP产生调节作用。

PG为电站负荷曲线给定装置取得的,使由各台机组有功功率测量元件测到的有功信号相加后得到的。当时,两台机组的调节作用只受有功偏差ΔP的影响,而与频率偏差Δf无关,此时调节特性方程为:


4 系统的硬件设计
图3示出系统硬件框图。根据系统的控制要求配置硬件如下:


图3 系统硬件简图


·控制器:三菱FX2N-80MR和两个FX0N-16EX扩展模块组成;
·人机界面:触摸屏;
·其它设备:2个DC24V继电器、功率表以及其它的辅助器件。

5 系统软件设计
本系统确保整个系统频率的稳定和电网的稳定供电。控制流程图如图4所示。


图4 系统流程图


部分梯形图如图5所示:当系统需要进行有功调节时,系统的软件或是手动发出信号开始调节,此时采集1个实时有功数据此数据与设定值(即目标功率值)进行比较并进行数据处理算出需要调节的时间,然后发出信号使调节继电器动所开始调节。如未达到则有可能是系统内部有故障。为了避免使程序进入死循环,则调节四次仍未能达到要求就自动中止程序)。如图4所示,当M10接到触发信号后瞬时接通使D300采到的瞬时有功功率数据与D301(设定值)进行比较。当D300 >D301时输出信号M300使PLC的Y001输出并使调节继电器动作进行调节。


图5 部分程序梯形图

6 结束语
本文所设计的系统操作简单、自动化程度高、应用广泛。减小了小型水电站工人的劳动强度,增加了整个系统的稳定性。经过一段时间的认真测试证明该系统已经完全符合小型水电厂的有功调节的要求。

1 引言
工程公司主要生产液氯钢瓶、液氨贮罐及氮气包等各种三类容器。由于该类容器属于剧毒、高压类容器,其工作压力一般在(2.0~16.0)MPa,因此对热处理的要求也特别高。
公司原有热处理炉的炉膛长12m、宽3.6m、高4m,热处理炉共有14个加热点,即14个燃气喷嘴,左右两侧的下方各均匀地排列7个。另有4个温度检测点。在热处理过程中,工人要密切注视着热处理炉中温度的变化,根据热处理工艺要求及当前温度值的大小,经常调节进气量的大小以达到控制炉温高低的目的。由于热处理炉的容积较大,故热处理炉内各部分的温差也较大。在一次设备的热处理过程中,工人往往要进行数十次进气量的调整。这种控制方法不仅增大了工人的劳动强度,更重要的是热处理炉进气量调节的幅度是工人凭经验来进行控制的,加上温度变化的滞后性较大,常常会因为操作不当而引起炉内各处温差较大或温升速率偏离热处理工艺要求过多(一般要求温升速率为100℃/h),使得被处理的设备可能会由于“严重网状”而产生裂纹;有时也可能会因为加热不足或过热等现象,使得被处理的设备表现出硬度不足、球化不完全或晶粒粗大、碳化物粗厚等疵病。
热处理质量一般需要通过专门的仪器才能得到鉴定,而要对出厂的每一个设备都做这样的鉴定是有一定困难的。所以热处理质量的好坏关系到设备使用的安全性能。为tigao热处理过程中的自动化程度,改善热处理效果,保证产品质量,提出了对原有热处理炉进行改造,设计一个新型的热处理炉。
2 热处理炉控制系统的设计
2.1 系统结构框图
热处理炉控制系统结构如图1所示。为实现对热处理炉进气量的均匀控制,将原来1个点上只有1个喷嘴改成1个点上有3个喷嘴,这样热处理炉由原来的14个喷嘴增加至42个喷嘴。但总的进气量基本保持不变。热处理炉控制系统在工作中视炉内温度的高低来决定打开几个喷嘴。另外,为准确反映炉内温度,温度检测点也由原来的左右各2个变成左右各4个,再加顶部4个,总共有12个温度检测点。系统选用日本三菱公司的FX2N-128MR作为数据采集、逻辑控制及实现PID调节的主控单元;选用上海嘉松机器有限公司生产的ZCZG高温电磁阀作为进气控制的执行元件。


图1 热处理炉控制系统结构图


2.2 系统工作原理
系统人机对话功能模块由BCD码拨盘、显示模块和声光报警等部分组成。BCD码拨盘用来完成给定温度的设定和温度检测点的选择等功能;通过BCD码拨盘的切换可显示炉内任一个温度检测点的温度;系统的控制信号是根据传感器所检测到的温度与给定温度进行PID运算后直接驱动可控硅对ZCZG高温电磁阀进行控制;电磁阀通电后,阀中的连杆被tisheng,之后转轴开始转动并作用于导阀从而打开主阀,断电后,在衔铁自重及返回弹簧作用下关上导阀,靠压差关闭主阀;当系统检测到温升速率大于给定温升速率或恒温时温度偏离允许的范围,系统都会为发出声光报警。
2.3 PID调节算法及系统主要参数设定
在由数字PID调节算法来实现控制的系统中,过程控制对象需要的是控制对象的值,而不是其增量。目前常用的PID调节算法有位置式算法和增量式算法两种。位置式算法每次输出均与整个过去的状态有关,计算式中要用到过去误差的累计值,因此容易产生较大的积累误差。而增量式PID算法只需要计算其增量,计算误差或精度不足对控制量的影响相对较小。故系统数据运算时采用增量式算法,而输出控制采用位置式算法。其运算式为:

PID调节算法中参数的选择是关系到PID调节性能好坏的关键所在。若简单地用试凑法来整定PID的调节参数,需要进行多次的模拟或现场试验才能得到所需参数。若先将调节器选为纯比例调节器,并使之形成闭环,再根据经验数据,使系统对阶跃输入响应达到临界振荡状态,这时的比例系数记为Kr,临界振荡的周期记为Tr。根据齐格勒-尼柯尔斯(Ziegle-Nichols)提供的经验公式,可求得不同类型调节器的参数。考虑到控制对象的特点,经过试验,后确定比例常数Kp=4.5、积分常数Ti=8.0、微分常数Td=2.8。
系统的采样周期T也是PID调节算法中的重要参数:从物理意义上讲采样周期的大小取决于被控参数的变化速率和被控过程对控制量的响应快慢。从理论上讲采样周期越短越好,但若采样周期过短,则有可能将高频噪声当作有用信号引入系统,至使系统发生不必要的升阶。系统实际选取的采样周期T=18s。
3 可控热处理炉控制系统的调试
首先,在PLC的输入X0-X77加开关量,看PLC上X0-X77相应的灯是否亮。再通过三菱编程软件FXGP_WIN_C强制输出Y0-Y77,看PLC上Y0-Y77相应的灯是否亮。由此鉴定PLC本身的性能好坏。
接着,可用电阻箱来模拟温度检测模块输出的变化情况。把电阻箱打到1000Ω档,相当于热处理炉刚开始加温,于是PLC送出打开全部喷嘴进气的命令;把电阻箱打到2000Ω档,相当于热处理炉已达到给定的高工作温度,PLC送出关闭全部喷嘴进气的命令;若使电阻箱的阻值在1250~2000Ω之间变化,PLC根据当前数据及PID运算的结果,发出关闭部分燃气喷嘴进气的命令,以保证热处理炉中的温度符合热处理工艺的要求。
4 结束语
新型热处理炉投入使用后,工人只需在设备进行热处理前通过BCD码拨盘输入欲保温的温度值、恒温的时间和允许的温升速率,系统就能自动地完成整个热处理过程。这不仅大大降低了工人的劳动强度,更重要的是它能使设备的热处理效果更符合热处理工艺的要求,tigao了产品质量的可靠性。

引言
PLC作为一种高性能的控制装置,在分布式系统中得到了越来越广泛的应用。在这种控制系统中,PLC可以多种方式,如直接采用现有的组态监控软件与上位机通信,但针对小规模的控制系统,找到一种高性能价格比的通信方法,具有积极的实际意义。本文就日本三菱公司生产的FX2可编程控制器与监控中心通信方式的实现,从软、硬件两个方面来说明这个问题。随着GSM移动通信网络的迅速发展和用户的日益扩大,新技术和新业务的开发和应用就已提到十分重要的位置。短消息服务业务作为GSM网络的一种基本业务,已得到越来越多的系统运营商和系统开发商的重视,基于这种业务的各种应用也蓬勃发展起来。
以往,在无人值守的现场出现问题后,维修人员不可能讯速赶到现场排除故障,造成许多不必要的损失,所以作者设计了该采集与监控系统,将告警信息通过手机短消息的方式,发送到集中监控中心,从而实现了远程遥控、遥测、遥调、遥讯。
1. 系统的工作原理及组成
该系统主要是由两部分组成:数据采集与监控终端;集中监控中心。通信方式采用手机短消息方式,通信设备采用手机模块TC35,手机终端TC35T。TC35具有的功能:有语音、数据、短消息、FAX四种传输方式;工作在GSM900MHz和1800MHz频带范围内;工作电源3.3V---5.5V;波特率为300bps-115kbps,在1200bps-115kbps为自动波特率设置;数据传送采用AT命令集;SMS具有TEXT和PDU图形模式;P-P数据通讯速率是2400、4800、9600、14400bps。TC35T是将TC35做到工业手机中,对外提供标准的RS232接口和电源接口。将计算机的串行口与TC35T的串行口用电缆直接连接,并在计算机上添加标准的调制解调器就可以使用了。TC35T使用AT命令集工作。系统的原理框图如图1所示:

集中监控中心通过通道1发送命令,首先通过TC35T发送设置命令,初始化数据采集与监控终端,设置需要采集的模拟量和开关量,设置系统的密码,设置维修人员的手机号码;然后发送采集命令,采集各种数据量。采集完数据量后,经PLC的处理,通过通道2以短消息的方式发送到集中监控中心,中心将数据整理存入数据库中。如果数据采集与监控终端出现了故障,直接通过TC35模块发送故障信息到维修人员手机上,同时监控中心接收发自数据采集与监控终端的告警信息,并进行相应的处理,如判定告警地点、告警类型及相应的原因、及时通知值班和相关维护管理人员、对告警信息进行统计和分析、设置告警监控模块配置信息等。当故障排除后,数据采集与监控终端同样发送短消息到监控中心,通知中心故障排除,可以正常采集数据了。当然每个数据采集与监控终端都对应由维修人员。
短消息服务业务(Short Message Service)是GSM系统提供给用户的一种数字业务,它与话音传输及传真一样同为GSM数字蜂窝移动通信网络提供的主要电信业务,SMS的收发占用的是GSM网络的信令信道,不会占用普通话音信道,而且它是双向通信,具有一定的交互能力。而且SMS具有较高的可靠性,短消息发送端的用户可知道短消息是否已经到达接收端,由于短消息依靠了SMSC短消息服务中心的存储和转发机制,当接收端用户关机或不在服务区内时,SMSC会暂时保存该短消息,接收端用户如果在规定时间(通常为24小时)内重新处于工作状态,SMSC会立刻发送短消息给接收端用户,当发送成功时会返回发送端用户一个确认信号。SMS充分利用了GSM网络覆盖广的特点和全程全网的优势,具有的移动性,使得任何一个申请了短消息服务的GSM无线终端用户在全网范围内获得服务。每个短消息的信息量限制为140个八位组(7比特编码)140个英文字符或70个中文字符。如果超过此长度,则要分多次发送。

2. 硬件电路设计
系统的硬件电路包括:监控终端硬件设计;集中监控中心。
监控终端硬件包括:数据采集部分;TC35接口电路;温度传感器电路;遥调电路。
集中监控中心硬件包括:上位机;TC35T手机终端。

2.1 数据采集部分
数据的采集分为:模拟量的采集和开关量的采集。
模拟量主要采集各种工业仪表的数据,如压力、liuliang、温度、湿度、电压、电流等。
开关量的检测,分别为:220V交流电压检测,门禁检测。
电路原理框图如图2所示。

2.2遥调电路设计
为了能够实现远程自动调节各种现场的参数。作者设计了遥调电路。采用固态非易失性数字电位器X9313。电路图如图3所示。数字电位器是一种特殊的DAC,它的模拟量输出不是电压或电流,而是电阻。滑动单元的位置是由CS、U/D、INC三个输入端控制。当CS为高,INC为高时,滑动端的位置可以被储存在一个非易失性存储器内,因此在下一次上电工作时可以被重新调用。当电位器的滑动端移到某一新位置时,而保持INC为低,CS为高时,此位置不存储。VH、VL、VW相当于一般电位器的三个端。


图3 遥调电路

2.3温度传感器电路设计
为了实时监视数据采集与监测终端的温度变化,当温度超过上限值时启动排风装置。当温度低过下限值时启动加温装置,作者设计了温度传感器电路。由于采集的温度范围属于常温范围,所以采用晶体管传感器LM335。它的输出电压与热力学温度成正比,灵敏度10mv/c。输出后的电压经过LM358放大器的放大后送A/D转换器。电路图如图4所示。


图4 温度传感器电路

2.4 TC35接口电路设计
TC35模块主要是由射频天线、内部FLASH、GSM基带处理器、匹配电源和一个40脚的ZIP插座组成。TC35接口电路设计主要是40针的电缆与单片机的接口。如图所示5。1~5脚提供3.3~5.5V峰值2A的直流电源;6~10接地;15脚为点火信号,接到单片机的P1.7,可以通过软件启动模块。16脚~23脚是RS232串口的功能引脚,18脚、19脚分别为发送RXD和接收TXD引脚。24脚~29脚对应的是SIM卡的引脚。32脚为指示灯引脚,当未插入SIM卡或40脚的电缆没有接好或者模块正在入网时,指示灯处于闪亮状态,亮600ms 灭600ms;当模块登录网络时,指示灯亮75ms灭3s。

2.5 电平转换器设计
FX2系列PLC的编程接口采用RS-422标准,而计算机的串行口采用RS-232标准。因此,作为实现PLC计算机通信的接口电路,必须将RS-422标准转换成RS-232标准。RS-232与RS-422标准在信号的传送、逻辑电平均不相同。RS-232采用单端接收器和单端发送器,只用一根信号线来传送信息,并且根据该信号线上电平相对于公共的信号地电平的大小来决定逻辑的“1”。RS-422标准是一种以平衡方式传输的标准,即双端发送和双端接收,根据两条传输线之间的电位差值来决定逻辑状态。RS-422电路由发送器、平衡连接电缆、电缆终端负载和接收器组成。它通过平衡发送器和差动接收器将逻辑电平和电位差之间进行转换。作者选用MAXIM公司的MAX232实现RS-232与TTL之间的电平转换。MAX232内部有电压倍增电路和转换电路,仅需+5V电源就可工作,使用十分方便;选用MAX485实现RS-485与TTL之间的转换。每片MAX485有一对发送器/接收器,由于通信采用全双工方式,故需两片MAX485,另外只需外接4只电容即可。



图5  TC35接口电路

3.软件设计
系统的软件设计包括:下位机软件设计;上位机软件设计;下位机与上位机通信软件设计。

3.1短消息PDU格式分析及实用的AT命令
发送和接收SMS信息有两种方式:基于AT命令的Text Mode(文本模式)和基于AT命令的PDU(protocol debbbbbbion unit) Mode模式。西门子的手机大多只支持PDU模式,在PDU模式下短信息正文经过编码后转换成UNICODE码被传送。由于我们采用的是西门子的TC35手机模块和TC35T手机终端,所以本文主要探讨PDU模式的发送和接收。

下面通过对发送的短消息格式分析,来介绍SMS PDU的数据格式。假设准备发送中文短消息内容为“晚上好123”。首先,将TC35T与计算机的串口相连,并打开计算机的超级终端:
3.1.1发送短消息的具体操作过程如下(带下划线字符为响应信息,{}内为注释):
AT 
OK {计算机与手机的连接成功,这时就可以输入各类GSM AT指令了}
AT+CNMI=1,1,2
OK {设置收到短消息提示}
当模块收到短消息时,给出回应: 
例如:+CMTI:“SM”,4
AT+CMGF=0
OK {设置模块工作的模式:0为PDU模式,1为文本模式}
AT+CMGS=26{发送短消息的字节数}
>0891 683108200905F0 0103 0D91 683199312523F9 3208 0C 665A4E0A597D003100320033//键入Ctrl+Z,看到提示符->出现在后一个数字后面,说明系统已经收到了命令。系统会返回操作的结果。
OK {OK表示成功,ERROR表示发送失败}
+CMGS:32
下面分析这条信息:
08:表示短消息中心地址长度
91:表示短消息中心号码类型
683108200905F0:表示短消息房屋中心号码
0103:表示发送短消息的编码方式
0D:表示目的地址长度
91:表示目的地址类型
683199312523F9:表示目的地址,即接收短消息的手机号码为:13991352329
3208:表示发送中文字符方式
0C:表示短消息长度
665A4E0A597D003100320033:表示发送中文字符的UNICODE码
665A {晚}  4E0A{上}  597D{好}  0031{1}  0032{2}  0033{ 3}
3.1.2模块接收短消息的分析:
AT+CMGR={阅读短消息的内容,Index 表示短消息存放的位置}
AT+CMGL= {列表短信息:stat =0,列未读过的短消息;stat =4,列所有的短消息}
 +CMGL: 1,2,,24 {1表示信息个数,2表示未发信息,24表示信息总容量} 
AT+CMGD={删除短消息,Index 表示短消息存放的位置}
OK {删除成功}
3.2 下位机软件设计
包括:数据采集及A/D转换程序;越限报警程序。
3.3上位机软件设计
包括:监控中心主界面设计;数据库程序设计。
3.4下位机与上位机通信软件设计
因为下位机与上位机通信是通过短消息来完成的,所以通信软件设计的关键是单片机如何发送AT命令。
4.结束语
本文采用短消息业务完成数据采集与监测终端与控制中心的通信。实现了数据采集与监测终端的遥控,远程控制电源的通断;遥测,远程测量各种开关量;遥调,远程调节各种增益;遥讯,远程查询采集各种模拟量。短消息业务具有永远在线、不需拨号、价格便宜、覆盖范围广等优势,特别适用于需频繁传送小数据量的应用,还适用于偏远地区、架设通信线路困难的地方。对于数据采集与监测终端来说,它一般放在无人值守地区,应用短消息业务来传送数据为合适。作者设计的该系统现在已经投入运行,实践证明了该系统工作非常的可靠。


展开全文
优质商家推荐 拨打电话