浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7241-1AA22-0XA0当天发货

西门子6ES7241-1AA22-0XA0当天发货

一、引言  
    隧道窑是一种连续式窑炉,主要用于陶瓷建材、日用陶瓷等烧制,就其结构而言主要由预热区、高温区、急冷区和缓冷区组成,隧道窑的控制涉及风机的控制、温度的检测、压力的检测,温度的控制、压力的控制以及其它控制。将CAN总线技术应用在隧道窑控制系统,可以很好地满足温度和压力实时控制的要求,系统通信速率高、稳定性强,而工业级人机界面的参与,使得控制系统更加直观化,易于用户使用和操作。下面以河北唐山某陶瓷厂的一条隧道窑为案例,介绍其控制系统的实现过程。  

    二、控制对象  
   此窑是一条80m长的燃气隧道窑,共有温度检测点20个(K分度12个,S分度8个),其中10个温度点受控,压力检测点2个,10个燃气执行器,10只烧嘴火焰检测,风机有:排烟风机2台(一用一备)、助燃风机2台(一用一备)、急冷风机2台(一用一备)、缓冷风机2台(一用一备)、抽热风机2台(一用一备)、窑头窑尾气幕风机各1台。10点温度控制是通过控制执行器阀位大小,改变燃料注入多少,从而使温度稳定。2点压力控制通过调节排烟风机和急冷风机转速来控制,实际上调节排烟和急冷变频器频率来控制压力。此外还有风机连锁,烧嘴熄火报警及各类故障报警。  


    三、窑炉控制系统的组成  
    本控制系统由3台嵌入式PLC(EASY-M2416R)、2台CAN-AD1216、1台CAN-AD1208、1台CAN-DA1208等部分组成。其中,嵌入式PLC用于逻辑开关量的控制,PID运算,以及通过CAN总线与下级的模块进行通讯;温度采集模块CAN-AD1216用来完成20点温度模拟量的采集;压力采集模块CAN-AD1208用来采集2点压力信号;模拟量输出模块CAN-DA1208用来控制风机变频器。 


    下面为系统框架图:  
  

060710PLC1



      作为本系统的控制核心嵌入式PLC Easy-AD1216,下层网络采用CAN总线来进行通讯,对上分别用RS0口与HMI(人机界面),RS1口与计算机进行通讯。其特点如下:  


   1、有比较强大的通讯功能 
      一路CAN总线接口在应用层作了标准规划,凡遵循该标准的CAN总线设备,可以通过CANSET软件设置CAN网络配置文件,并下载固化到EASY-M2416R中,就可以把该设备映射到CAN网络中。CAN总线由于具有良好的实时性、可靠性、抗干扰能力及检错能力,所以在一些条件比较苛刻的场合里广泛应用。  


    另外,串行口 RS0可用于梯形图程序及上位机的监控,还可以与人机界面通讯;串行口RS1可用于下载CANSET软件生成的CAN网络配置文件,还可以通过RS485网络连接第三方设备,如PC、三菱PLC。由于各个网络都是独立的,同个PLC在连接多个模式的网络也不会受影响。如此多样的通讯模式,确实为用户提供了更多的灵活性。  


    2、有和三菱相当的运算速度和几乎完全兼容的开发环境 
        经过测试,基本指令的运算速度在0.5u/步以下,和三菱FX2系列的PLC相当,这对于控制要求不是很高的用户来说已是足够了。它的梯形图以及指令和三菱PLC的也是完全兼容,并且都能在三菱编程软件里很好的运行。这对于使用过三菱PLC的用户来说减轻了很多的困难。  


   3、独立开发的CAN总线互联CANSET软件 
     CANSET软件能很轻松方便的完成通讯设置。设置内容包括:网络设备总数、网络设备地址、网络通讯数据的内容、网络数据通讯速度等。它还能根据用户的需要,灵活设置每个设备的任务级别,以保证网络资源的合理分配。处于下层网络的AD和DA,以及Easy-M2416R设备,遵循CANBUS协议的接口,能很方便的联入CAN总线网络中,构成系统的主体。 
   四、系统功能的实现  
    1、所有的逻辑控制和PID控制都由Easy-M2416R完成,在CAN总线网络中,三台PLC中任选一台作为主站,这里选Easy-M2416R-1作其主站。它通过CAN总线与下层网络的每个设备进行通讯,两个设备之间的通讯也必须由主站来完成。同时它又作为从站与PC(上位机)和HMI(人机界面)进行通讯。 


060710PLC2



060710PLC3




060710PLC4


 2、整个CAN总线网络互联也全由CANSET软件来实现,它是图形化界面的软件,设置起来十分简便,并且在PLC的梯形图中除了地址和主从站外无须再对其他相关内容进行设置,在一定程度上简化程序设计的工作量。 


     3、系统具有很大的扩展性和可维护性,在工作环境改变时,可灵活增添或减少设备。实现起来也只需在CANSET软件中来设置即可,不用考虑其他事项,这对于系统的不断完善和升级换代奠定了很好的基础。 


     4、系统工作流程:下层网络的AD1216、AD1208设备把采集上来的温度,和压力信号转化为数据信号上传到Easy-M2416R-1;运用于PID运算,控制各个执行器的正反转和DA的输入值,从而控制窑炉的各段温度和压力;另外在逻辑控制上完成各个风机和电磁阀的控制。下面是其中一路执行器正反转控制的梯形图程序:  


     5、人机界面通过串口RS0与EASY-M2416R-1连接,实现整个系统运行监控,其画面包含:现场模拟图、风机状态指示、温度压力显示、各种参数设置、变频调节、实时温度曲线图、设定温度曲线图以及报警信息。  


    五、结束语  
    由于嵌入式PLC EASY-M2416R兼有CAN总线接口和与三菱相同的数据链协议接口、编程环境等特色,因此它既能很好的构建以CAN总为下层网络,又能构建以RS485和RS232总线为上层网络的系统。将它应用在隧道窑炉系统,既可以满足底层的控制又可以满足上层的监控,尤其是CAN总线的应用,使它的实时性、灵活性、组网方便性以及可维护性获得很好的保证

 1、引言 

  传统的远程监控只具备数据采集功能,在需要实时控制和数据处理时,会显得力不从心。PLC 作为工业控制的核心部件,其在网络、通信等方面的能力越来越强,具备远程监控要求的数据采集、实时控制和数据处理功能。随着国产 PLC 市场占有量的tisheng,PLC 的价格也比以前更具优势,使用 PLC 做 DAS系统或者用 PLC 平台开发数据采集系统将是大势所趋或者说相当有吸引力的选择。德维森公司的 V80 小型 PLC 在供热、交通监控、楼宇监控等行业有许多的成功应用. 


  下面以其在东北某供热网监控为例说明 PLC 在数据采集和远程监控行业中的应用。 

  2、远程监控系统 

  供热网远程监控系统的示意图如下: 

060814PLC1

图 1 供热网远程监控系统示意图

点击此处查看全部新闻图片



  V80 系列 PLC 采集现场每个换热子站的温度、压力、liuliang,并根据采集数据进行供热liuliang的控制,以达到节能的目的。根据室外气温的变化,通过调节一级管网电动阀门的开度来及时控制二级管网的回水温度,通过调度给定的控制曲线,保证每个换热站的运行参数始终在给定的范围内。同时,中央监控室根据需要调度和遥控子站的电动阀门,调整运行参数。系统配置 GPRS DTU,可以实现温度的控制、补水泵变频的远程控制。上位机选用组态王组态软件,与数据库结合起来,对所有数据进行存储和分析,并可以配合优化软件进行优先控制。   3、PLC 特点 
   

060814PLC2

  图 2 V80 系统结构示意图 

点击此处查看全部新闻图片


 

  针对前面提到的各种问题,本文提出了一个更为优胜的方案,其特点如下: 

  1、 网络通信功能 

  V80 系列 PLC 可同时支持 2 个以上的通信口,可利用 RS485 通信口组建控制网络,把多台 V80 小型 PLC 组进同一个现场总线网络内,主控 PLC 上连接一个 GPRSDTU 模块,为监控网络提供透明的上网通道。选用 GPRS DTU 代替无线 RTU 可以大大降低成本,在敷设了电话线的地方可选用 Modem,使整个系统的造价达到优。 

  2、CPU 模块功能 

  M32DT 模块是 16 路数字量输入和 16 路晶体管输出的 CPU 模块,本身带有两个通信口,一个 RS232 和一个 RS485,内部带 MODBUS 主从通信协议和 FREE 通信协议,可以与各种 HMI 或者各种组态软件通信,通信协议库文件使各厂商自行开发上位机软件提供了诸多便利。 

  M32DT 内带 FLASH 存储器,可将各种参数存储在本地,还带有掉电保持功能,从而保证使用的可靠性和便利性。高速运算速度和完备数学运算能力使其更适合通信和模拟量处理环境。 

  3、抗干扰能力强 

  整个系统的宽温和宽电源供电设计使其可以在恶劣的环境中游刃有余,V80 系列产品已通过 CE 认证。 

  4、 编程简单方便 

  V80 系列 PLC 的编程语言支持 IEC61131-3 标准,可以方便编程。同时,支持在线编程,也就是在运行态下可以进行程序修改和调试,为监控现场的在线升级和扩展提供方便。 

  5、  

  V80 系列 PLC 比同样点数的数采模块具有价格优势,而且其图形化编程功能使其成为一个强有力的分布式监控平台。 

  4、结论 

  本文以供热网的远程监控为例,介绍了 V80 系列 PLC 联网、通信协议与第三方产品集成特点,说明 V80 系列 PLC 在数据采集和远程监控行业中的应用,实际运行结果表明 V80系列 PLC 是客户将采集、控制、远程监控合而为一的理想选择。

 1 引言

    数控机床是典型的机电一体化系统。PLC工程现场界面涉及光、机、电、气、液等复杂的输入输出信令,加之PLC对于信号的逻辑处理具有的抽象运算特征,使得工业现场故障处理工作通常是相当的复杂困难,PLC机电系统现场故障往往使得缺少工程经验的设备管理者们束手无策,较长时间的故障处理处理可以大幅度降低产能,严重影响生产。本文以就事论事的方式平铺直叙具体的机电工程现场故障处理案例,保留住故障处理经验中珍贵的分析判断过程。

    2 数控机床故障诊断案例

    2.1甄别PLC内外部故障实例

    配备820数控系统的某加工中心,产生7035号报警,查阅报警信息为工作台分度盘不回落。在SINUMERIK810/820S数控系统中,7字头报警为PLC操作信息或机床厂设定的报警,指示CNC系统外的机床侧状态不正常。处理方法是,针对故障的信息,调出PLC输入/输出状态与拷贝清单对照。

    工作台分度盘的回落是由工作台下面的接近开关SQ25、SQ28来检测的,其中SQ28检测工作台分度盘旋转到位,对应PLC输入接口110.6,SQ25检测工作台分度盘回落到位,对应PLC输入接口110.0。工作台分度盘的回落是由输出接口Q4.7通过继电器KA32驱动电磁阀YV06动作来完成。

    从PLCSTATUS中观察,110.6为“1”,表明工作台分度盘旋转到位,I10.0为“0”,表明工作台分度盘未回落,再观察Q4.7为“0”,KA32继电器不得电,YV06电磁阀不动作,因而工作台分度盘不回落产生报警。

    处理方法:手动YV06电磁阀,观察工作台分度盘是否回落,以区别故障在输出回路还是在PLC内部。



    2.2诊断接近开关故障实例

    某立式加工中心自动换刀故障。

    故障现象:换刀臂平移到位时,无拔刀动作。

    ATC动作的起始状态是:(1)主轴保持要交换的旧刀具。(2)换刀臂在B位置。(3)换刀臂在上部位置。(4)刀库已将要交换的新刀具定位。

    自动换刀的顺序为:换刀臂左移(B→A)→换刀臂下降(从刀库拔刀)→换刀臂右移(A→B)→换刀臂上升→换刀臂右移(B→C,抓住主轴中刀具)→主轴液压缸下降(松刀)→换刀臂下降(从主轴拔刀)→换刀臂旋转180°(两刀具交换位置)→换刀臂上升(装刀)→主轴液压缸上升(抓刀)→换刀臂左移(C→B)→刀库转动(找出旧刀具位置)→换刀臂左移(B→A,返回旧刀具给刀库)→换刀臂右移(A→B)→刀库转动(找下把刀具)。换刀臂平移至C位置时,无拔刀动作,分析原因,有几种可能:

    (1)SQ2无信号,使松刀电磁阀YV2未激磁,主轴仍处抓刀状态,换刀臂不能下移。

    (2)松刀接近开关SQ4无信号,则换刀臂升降电磁阀YV1状态不变,换刀臂不下降。

    (3)电磁阀有故障,给予信号也不能动作。

    逐步检查,发现SQ4未发信号,进一步对SQ4检查,发现感应间隙过大,导致接近开关无信号输出,产生动作障碍。

    2.3诊断压力开关故障实例

    配备FANUC0T系统的某数控车床。

    故障现象:当脚踏尾座开关使套筒顶紧工件时,系统产生报紧。

    在系统诊断状态下,调出PLC输入信号,发现脚踏向前开关输入X04.2为“1”,尾座套筒转换开关输入X17.3为“l”,润滑油供给正常使液位开关输入X17.6为“1̶1;。调出PLC输出信号,当脚踏向前开关时,输出Y49.0为“1”,同时,电磁阀YV4.1也得电,这说明系统PLC输入/输出状态均正常,分析尾座套筒液压系统。

    当电磁阀YV4.1通电后,液压油经溢流阀、liuliang控制阀和单向阀进入尾座套筒液压缸,使其向前顶紧工件。松开脚踏开关后,电磁换向阀处于中间位置,油路停止供油,由于单向阀的作用,尾座套筒向前时的油压得到保持,该油压使压力继电器常开触点接通,在系统PLC输入信号中X00.2为“l”。但检查系统PLC输入信号X00.2则为“0”,说明压力继电器有问题,其触点开关损坏。

    故障原因:因压力继电器SP4.1触点开关损坏,油压信号无法接通,从而造成PLC输入信号为“0”,故系统认为尾座套筒未顶紧而产生报警。

    解决方法:更换新的压力继电器,调整触点压力,使其在向前脚踏开关动作后接通并保持到压力取消,故障排除。

    2.4诊断中间继电器故障实例

    某数控机床出现防护门关不上,自动加工不能进行的故障,而且无故障显示。该防护门是由气缸来完成开关的,关闭防护门是由PLC输出Q2.0控制电磁阀YV2.0来实现。检查Q2.0的状态,其状态为“1”,但电磁阀YV2.0却没有得电,由于PLC输出Q2.0是通过中间继电器KA2.0来控制电磁阀YV2.0的,检查发现,中间继电器损坏引起故障,更换继电器,故障被排除。

    另外一种简单实用的方法,就是将数控机床的输入/输出状态列表,通过比较通常状态和故障状态,就能迅速诊断出故障的部位。

    2.5根据梯形图逻辑诊断DI点故障实例

    配备SINUMERIK810数控系统的加工中心,出现分度工作台不分度的故障且无故障报警。根据工作原理,分度时首先将分度的齿条与齿轮啮合,这个动作是靠液压装置来完成的,由PLC输出Q1.4控制电磁阀YVl4来执行,PLC梯形图如下图所示。

    通过数控系统的DIAGNOSIS能中的“STATUSPLC”软键,实时查看Q1.4的状态,发现其状态为“0”,由PLC梯形图查看F123.0也为“0”,按梯形图逐个检查,发现F105.2为“0”导致F123.0也为“0”,根据梯形图,查看STATUSPLC中的输入信号,发现I10.2为“0”,从而导致F105.2为“0”。I9.3、I9.4、I10.2和I10.3为四个接近开关的检测信号,以检测齿条和齿轮是否啮合。分度时,这四个接近开关都应有信号,即I9.3、I9.4、I10.2和I10.3应闭合,现I10.2未闭合,处理方法:(1)检查机械传动部分。(2)检查接近开关是否损坏。

    2.6根据梯形图逻辑诊断DO点故障实例

    配备SINUMERIK810数控系统的双工位、双主轴数控机床。

    故障现象:机床在AUTOMATIC方式下运行,工件在一工位加工完,一工位主轴还没有退到位且旋转工作台正要旋转时,二工位主轴停转,自动循环中断,并出现报警且报警内容表示二工位主轴速度不正常。

    两个主轴分别由B1、B2两个传感器来检测转速,通过对主轴传动系统的检查,没发现问题。用机外编程器观察梯形图的状态。

    F112.0为二工位主轴起动标志位,F111.7为二工位主轴起动条件,Q32.0为二工位主轴起动输出,I21.1为二工位主轴刀具卡紧检测输入,F115.1为二工位刀具卡紧标志位。

    在编程器上观察梯形图的状态,出现故障时,F112.0和Q32.0状态都为“0”,因此主轴停转,而F112.0为“0”是由于Bl、B2检测主轴速度不正常所致。动态观察Q32.0的变化,发现故障没有出现时,F112.0和F111.7都闭合,而当出现故障时,F111.7瞬间断开,之后又马上闭合,Q32.0随F111.7瞬间断开其状态变为“0”,在Flll.7闭合的同时,F112.0的状态也变成了“0”,这样Q32.0的状态保持为“0”,主轴停转。Bl、B2由于Q32.0随F111.7瞬间断开测得速度不正常而使F112.0状态变为“0”。主轴起动的条件F111.7受多方面因素的制约,从梯形图上观察,发现F111.6的瞬间变“0”引起Flll.7的变化,向下检查梯形图PB8.3,发现刀具卡紧标志F115.1瞬间变“0”,促使Flll.6发生变化,继续跟踪梯形图PB13.7,观察发现,在出故障时,I21.1瞬间断开,使F115.1瞬间变“0”,后使主轴停转。I21.1是刀具液压卡紧压力检测开关信号,它的断开指示刀具卡紧力不够。由此诊断故障的根本原因是刀具液压卡紧力波动,调整液压使之正常,故障排除。

    3 结束语

    通过典型实例与故障现象对数控系统、立式加工中心自动换刀故障、配备FANUC0T系统的某数控车床、配备SINUMERIK810数控系统的双工位、双主轴数控机床等运行中存在的问题加以分析,并作出相应的故障排除方法


展开全文
优质商家推荐 拨打电话