浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
6ES7241-1AA22-0XA0当天发货

6ES7241-1AA22-0XA0当天发货

1 前言

随着科学技术的发展及制造技术的进步,社会对产品多样化的需求越来越强烈,产品的更新换代周期也越来越短,中小批量生产的比重明显增加,从而对制造设备提出了更高的要求。为满足市场的需要,要求制造设备具有高效率、高质量、高柔性及低成本的性能,数控机床作为一种自动化的加工设备而被广泛采用。同时,随着现代机械制造业向更高层次的发展,数控机床也必将成为柔性制造单元(FMC)、柔性制造系统(FMS)以及计算机集成制造系统(CIMS)的基础装备。计算机数控系统作为制造形状复杂、高质量、高精度产品所必备的基础设备,己成为当今先进制造技术的一个重要组成部分。

PLC(Programmable Logic Controller)可编程逻辑控制器是20世纪60年代末期逐步发展起来的一种以计算机技术为基础的新型工业控制装置。PLC作为计算机技术应用于工业控制领域的崭新产品,也是开放式数控系统中不可缺少的重要组成部分。它在处理开关量的控制问题时起着重要作用。现代先进的数控机床一般可分为机床床体(MT)、NC和PLC三部分。数控机床中NC和PLC协调配合共同完成对数控机床的控制,其中NC主要完成管理调度及轨迹控制等“数字控制”工作,PLC主要完成与逻辑有关的一些动作,如刀具的更换、工件的夹紧及冷却液润滑液的开停。PLC技术在各种工业过程控制、生产自动线控制中得到极为广泛的应用,成为工业自动化领域中的一项十分重要的应用技术。

在数控机床上有两类控制信息:一类是控制机床进给运动坐标轴的位置信息,如数控机床工作台的前、后、左、右移动;主轴箱的上、下移动和围绕某一直线轴的旋转运动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值,对伺服进给电机进行控制而实现的。这种控制的核心作用就是保证实现加工零件的轮廓轨迹,除点位加工外,各个轴的运动之间随时随刻都必须保持严格的比例关系。这类数字信息是由CNC系统(专用计算机)进行处理的,即“数字控制”。另一类是数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,刀具的更换,工件的夹紧、松开,液压、冷却、润滑系系统的运行控制。这一类控制信息主要是开关量信号的顺序控制,一般由PLC来完成。

2 精密切割数控机床的功能分析

精密切割数控机床是通过数控系统以数字方式控制刀具的运动以实现对工件的切削,在编写数控车削加工程序时,并不考虑刀具。在加工前,用户必须将刀具的X轴补偿量、Z轴补偿量、刀尖圆弧半径、刀尖形式共四种补偿参数输入数控系统,由数控系统根据程序,进行补偿运算。这四种参数中,刀尖形式按数控系统的规定予以确认,刀尖圆弧半径可由R规测量,而刀具的X,Z轴补偿量的测量则相对困难一些,使用自动对刀仪能很好地解决这个问题,为此,数控机床及加工中心大多配置了各种不同类型的对刀装置,如机外对刀仪、机内光学对刀仪、接触式自动对刀装置等。由于车削中心对一般的数控车床刀具夹持标准化程度不高,因此采用机外对刀仪的对刀精度相对较低,而且专用机外对刀仪成本较高,操作复杂,需要专门的操作空间,所以实用性较差。而采用机内接触式自动对刀装置无疑是一种简便、快捷的对刀方法,它能方便地自动测量刀具的固定刀补值,大大减少对刀时间,tigao机床的加工效率。所以本文旨在设计一种机内接触式的数控车床,实现数控车削前的精密对刀,tigao生产率,降低加工成本。需要解决的问题主要有以下方面:自动对刀仪需有高精度的电子测头(传感器),能够准确在触发点触发,有较快的反映时间;对刀仪的测头与刀尖刚性接触,需加缓冲装置,对测头表面保护,压力需控制在1~10MPa左右,这样才不会对传感器的测头造成损坏,形成凹坑;系统能利用机床本身的位置测量装置进行测量,通过对不同刀尖触发点坐标(X,Z)的记录,可以方便地得到一组坐标值,分析计算后便可确定各刀刀补值;安装和固定对刀仪的装置(联接臂)应达到相应精度要求,满足平行度与垂直度要求,且要有较好的刚度和易操作性。

3 精密切割数控机床总体设计

对精密切割的功能,主要需保证刀具切割精度,因此要求对数据机床的主要部件一一传感器的精度得到保证,传感器的作用是感知和检测某一形态的信息,并将其转换成另一形态的信息,将被测量(刀尖位置这个物理量)按照一定的规律转换成可用输出信号(电流、电压)表示的物理量。 精密切割的数控机床传感器由以下几部分组成:

newmaker.com
图 一:数控机床传感器组成

在本文中,传感器的选用应有相当的精度,完成以下功能:1)、实现对X轴和Z轴两个方向的传感,对刀仪要得到X轴和Z轴的坐标值,必须使不同刀具在相同的点触发传感器,进而运用机床数控系统的功能再结合编程实现该点坐标值的获取。实际上传感器要完成的功能是一个开关量,不同的刀具在相同点触发即可。2)、由于刀具偏角的不同,传感器不能做成X轴向和Z轴向相互垂直的两对传感器,这样对Z向坐标的时候,得到的刀尖点可能不是真实的刀尖点坐标。

本文采用的是机械式开关传感器,用机械触发的方式得到一个开关量的输出,当刀尖与传感器触发并行进到预设位置时,电路接通得到触发信号。机械式传感器相对来说精度是差一些,但只要设计合理,也能将误差控制在合理的范围内。另一方面,可自行设计以兼顾刀具刀偏角的不同和传感器的大小及联接方式。此种传感器简单适用,成本较低,具有很大的市场推广价值。

4 PLC与数控系统编程

NUM1020/1040数控系统是NUM于1995年开发出的全新数控系统,是紧凑且功能完善的32位数控系统,并且和NUM1060系列系统完全兼容。它特别适合于1~6轴的数控机床,其硬件特点如下:采用CISC( 超大规模集成电路)技术的GSP主板;主板上连接可插接(分离的)小模板,由于考虑到数控系统和系统外部的联系,NUM把和外界联系的功能模块制造成可插接小模块,便于用户将来的维护。具体分为轴模块、显示模块和通讯模块;NUM1020/1040采用+24VDC为其电源输入,由于数控系统是弱电电路,采用+24VDC为电源输入,可以大大降低其热源和不稳定因素的影响。用户可以把+24VDC稳压电源放在电气柜内,大大tigao了整个数控系统的可靠性;PLC功能的内部集成,PLC功能的内部集成化,tigao了PLC和CNC的内部通讯能力,增强了数控机床的逻辑控制;PLC的32输入和24输出模块,NUM的32输入和24输出模块可以和外围的电路相连接,而这种模块通过NUM提供的电缆和NUM数控系统连接,tigao了整个机床的可靠性。(如果有问题,只能损坏这种模块,不会对数控系统造成损坏);光纤技术的通讯,PLC输入输出点的扩展,通过光纤进行连接,简化了线路的连接;轴转接模块,机床的编码器和到伺服的线路可以直接联到此模块上,并通过它和数控系统的轴板进行连接,tigao了数控系统的可靠性。另外,NU M的轴连接和其它数控系统不同,NUM的轴模块连接此轴的所有信息(如编码器、速度信号、回零开关)。如果机床的轴有问题,可以直接把轴模块上的插头相对换,就能很快地查出问题所在(系统内部或外部);轻巧实用的紧凑型操作面板。其上显示器和计算机的CRT有可兼容性,与NC相通的功能键共有47个,有6个用户自由定义键及串行通讯接口,可以连接PC的键盘(直接插拔)。

按照设计要求,当传感器检测到信号时,数控系统的程序并未监控,此时是不能记录刀尖坐标值进行数据处理的。必须先使进给电机停下来,等候操作者发出指令,然后进行下一步的操作。所以应该通过PLC的控制来实现这一功能,将Q001.0和Q001.1两个端子分别与两两个进给电机相连,实现单独控制。其次,传感器共有四个测头,但对进给电机的控制都是一样的:任何一个传感器得到信号都必须使相应的电机同时停下来,然后进行相应的数据处理。

数控机床的传感器得信号后通过接口电路传给PLC,PLC将得到的信号通过交换区与CNC进行数据的传输,CNC将信息运算处理后再传递到PLC中,PLC控制X向电机和Z向电机运动。数控系统与传感器的接口电路如图2所示:

如图所示为PLC的接线示意图,将%I001.0、%I001.1、%I001.2、%I001.3 四个输入口分别与四个传感器相连,然后再与COM口连接。传感器得到信号后,相当于开关闭合,由原先的+24VDC电压跳变为零,从而给PLC的相应的输入端口一个信号。输出口%Q001.0控制X方向进给电机的使能,%Q001.1控制Y方向进给电机的使能。

newmaker.com
图 二 :数控机床接口电路

NUM1060CNC是一种多功能、多处理器的系统,它提供与数控机床连接的各种自动控制功能。用梯形图语言编制的自动控制功能包括安装在机床上的传感器和执行机械以及与CNC的数据交换。自动控制功能设置在中央处理单元之中,它包括一块或多块功能卡,CNC通过它们实现图形显示,自动控制和信息存储功能。CPU与系统的数据交换可以分为二种类型:通过交换区的通讯和通过协议的通讯。

自动控制功能由一个监督程序进行管理,它包括处理初始化,将输入/输出点分配到不同的框架以及输人输出接口和监视器的管理等多种基本任务。监控程序与用户程序一起对系统进行整体的监督管理。用户程序是在监督程序控制下受一个20ms周期的实时时钟(RTC)支配循环运行的。

机床处理器的存储器空间安排如下:

(1) 有备份功能(掉电保持)的32K静态RAM。
(2) 在电源接通是复位(清零)的32K动态RAM。
(3) 机床处理器(1MB V1)的用户程序使用的180KB动态RAM。
(4) 机床处理器(4MB V1)的用户程序使用的2.5MB动态RAM。
(5) 机床处理器(4MB V2)的用户程序使用的3.5MB动态RAM。
(6) UCSII模块上的用户程序使用的64KB动态RAM。

自动控制功能如下:

(1) 对DACs(12位)直接存取。
(2) 对ADCs和输入/输出点间接读和写存取,这种存取是经由虚拟存储空间(每20ms刷新)实现的。

5 创新点总结

本文的创新点是针对数控车床对刀具jingque切割中,对刀时间长、精度差这一问题,设计了精密切割数控车床,通过对刀尖位置的jingque捕捉运用NUM数控系统自身的测量装置得到了刀尖点的坐标,经过计算将不同刀具相对于标准刀的位置偏差得出并再存入数控系统,实现了自动对刀,有效地tigao了对刀的效率和精度,具有可推广性。可为生产效率的tigao,制造成本的降低起到积极的作用。

在风力发电系统中,变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率,而且有效的降低的噪音,稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性,现代的大型风力发电机大多采用变桨距控制。本文针对国外某风电公司液压变桨距风力机,采用可编程控制器(PLC)作为风力发电机的变桨距控制器。这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了液压变桨距系统的工作原理,设计了变桨控制器的软件系统。后在国外某风电公司风力发电机组上做了实验,验证了将该变桨距控制器可以在变桨距风力机上安全、稳定运行的。

随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出:既能tigao风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持佳转换效率,使输出功率大,从而tigao系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种:液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。

在变桨距系统中需要具有高可靠性的控制器,本文中采用了OMRON公司的CJ1M系列可编程控制器作为变桨距系统的控制器,并设计了PLC软件程序,在国外某风电公司风力发电机组上作了实验。

变桨距风力机及其控制方式

变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位jingque、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。

newmaker.com
图1 变桨距风力发电机简图

如图2所示为变桨距控制器的原理框图。在发动机并入电网之前由速度控制器根据发动机的转速反馈信号进行变桨距控制,根据转速及风速信号来确定桨叶处于待机或顺桨位置;发动机并入电网之后,功率控制器起作用,功率调节器通常采用PI(或PID)控制,功率误差信号经过PI运算后得到桨距角位置。

newmaker.com
图2 变桨距风力机控制框图

当风力机在停机状态时,桨距角处于90°的位置,这时气流对桨叶不产生转矩;当风力机由停机状态变为运行状态时,桨距角由90°以一定速度(约1°/s)减小到待机角度(本系统中为15°);若风速达到并网风速,桨距角继续减小到3°(桨距角在3°左右时具有佳风能吸收系数);发电机并上电网后,当风速小于额定风速时,使桨距角保持在3°不变;当风速高于额定风速时,根据功率反馈信号,控制器向比例阀输出-10V-+10V电压,控制比例阀输出liuliang的方向和大小。变桨距液压缸按比例阀输出的liuliang和方向来操纵叶片的桨距角,使输出功率维持在额定功率附近。若出现故障或有停机命令时,控制器将输出迅速顺桨命令,使得风力机能快速停机,顺桨速度可达20°/s。

变桨控制器的设计

◆系统的硬件构成

本文实验中采用国外某风电公司风力发电机组作为实验对象,其额定功率550KW,采用液压变桨系统,液压变桨系统原理图如图3所示。从图3中可以看出,通过改变液压比例阀的电压可以改变进桨或退桨速度,在风力机出现故障或紧急停机时,可控制电磁阀J-B闭合、J-A和J-C打开,使储压罐1中的液压油迅速进入变桨缸,推动桨叶达到顺桨位置(90°)。

newmaker.com
图3 液压变桨距控制系统原理图

本系统中采用OMRON公司的CJ1M系列PLC。发电机的功率信号由高速功率变送器以模拟量的形式(0~10V对应功率0~800KW)输入到PLC,桨距角反馈信号(0~10V对应桨距角0~90°)以模拟量的形式输入到PLC的模拟输入单元;液压传感器1、2也要以模拟量的形式输入。在这里选用了4路模拟量的输入单元CJ1W-AD041;模拟量输出单元选用CJ1W-DA021,输出信号为-10V~+10V,将信号输出到比例阀来控制进桨或退桨速度;为了测量发电机的转速,选用高速计数单元CJW-CT021,发电机的转速是通过检测与发电机相连的光电码盘,每转输出10个脉冲,输入给计数单元CJW-CT021。

◆系统的软件设计

本系统的主要功能都是由PLC来实现的,当满足风力机起动条件时,PLC发出指令使叶片桨距角从90°匀速减小 ;当发电机并网后PLC根据反馈的功率进行功率调节,在额定风速之下保持较高的风能吸收系数,通过调整桨距角使输出功率保持在额定功率上。在有故障停机或急停信号时,PLC控制电磁阀J-A和J-C打开,J-B关闭,使得叶片迅速变到桨距角为90°的位置。

风力机起动时变桨控制程序流程如图4所示。当风速高于起动风速时PLC通过模拟输出单元向比例阀输出1.8V电压,使叶片以0.9°/s的速度变化到15°。此时,若发电机的转速大于800r/min或者转速持续一分钟大于700r/min,则桨叶继续进桨到3°位置。PLC检测到高速计数单元的转速信号大于1000r/min时发出并网指令。若桨距角在到达3°后2分钟未并网则由模拟输出单元给比例阀输出-4.1V电压,使桨距角退到15°位置。

newmaker.com
图4 风力机起动变桨控制程序流图

发电机并上电网后通过调节桨距角来调节发电机输出功率,功率调节程序流程图如图5所示。当实际功率大于额定功率时,PLC的模拟输出单元CJ1W-DA021输出与功率偏差成比例的电压信号,并采用LMT指令使输出电压限制在-4.1V(对应变桨速度4.6°/s)以内。当功率偏差小于零时需要进桨来增大功率,进桨时给比例阀输出的大电压为1.8V(对应变桨速度0.9°/s)。为了防止频繁的往复变桨,在功率偏差在±10kW时不进行变桨。

newmaker.com
图5 变桨调功程序流程图

在变桨距控制系统中,高风速段的变桨距调节功率是非常重要的部分,若退桨速度过慢则会出现过功率或过电流现象,甚至会烧毁发电机;若桨距调节速度过快,不但会出现过调节现象,使输出功率波动较大,而且会缩短变桨缸和变桨轴承的使用寿命。会影响发电机的输出功率,使发电量降低。在本系统中在过功率退桨和欠功率进桨时采用不同的变桨速度。退桨速度较进桨速度大,这样可以防止在大的阵风时出现发电机功率过高现象。


展开全文
优质商家推荐 拨打电话