西门子模块6ES7214-2BD23-0XB8参数设置
1 引言
在塑料、印染以及造纸纺织等业生产中,往往具有很多个同步传动单机,每个机组都有各自独立的拖动系统。与此同时,又要求各单元间被加工物(布匹、纸张等)的运行线速度能够步调一致,即实现同步运动。造纸设备虽然种类繁多,传动结构也各异,但从系统组成来看都是由压榨、烘干、压光、卷取等几个部分组成,各部分都有电机驱动。造纸工艺要求:设备传动时应保证纸在各部分传送时具有恒定的速度及恒定的张紧度。目前造纸设备实现这个要求的佳控制方案是变频调速,而对变频器的控制主要有两类:一类是PLC控制,另一类是IPC机或工控机控制[1][2]。本文采用PLC控制来实现造纸机的同步传动。
2 造纸机同步传动系统
2.1 造纸生产线控制要求分析
图1为造纸生产线操作台的面板图。由于该系统由多个单元组成,各单元要求保持同步,从而构成同步传动控制系统。对同步控制的要求:
图1 操作台布置图
(1) 统调:各单元要能够同时升速和降速。统调是根据主指令单元(通常是一单元)对转速的要求来进行调节的。
(2) 局部微调:当操作人员发现某单元的速度不同步时,可以进行微调(人工干预)。微调时,该单元以后的各单元的转速必须同时升速或降速,而不必逐个的进行。
(3) 单独微调:在检修和调试阶段,或者遇到特殊情况,又必须能够对每个单元进行单独的微调。
假设该生产线由四个单元组成,各个单元的运行情况可以由各自的线速表直观的显示出来。
2.2 同步运行
(1) 当进行统调操作时,将单/统调开关切换到统的位置,通过统调按钮的增/减对四个单元进行同步控制;
(2) 当发现某单元的速度不同步时,可以进行同步微调,例如:当2单元需要调节时,则2~4单元则同时升速或降速;
(3) 当由于某种原因,某个个别单元速度跟不上时,这时需要进行绷紧。对于造纸系统来说,需要按下绷紧按钮,使其速度短暂提升一小段时间,达到绷紧效果。
为了便于操作人员直观的了解系统运行情况,各个操作均有相应的指示灯显示。
2.3 造纸机同步传动控制原理
(1) 变频器的启停
如图2所示,以#1单元的变频器控制图为例,SA13为变频器的启动开关,当SA13接通时,运行指示灯LA11亮,停止指示灯LA12灭,此时变频器处于运行状态;当按下变频器停止按钮SA12时,线圈KA13失电,变频器停止运行。
图2 #1 变频器控制图
(2) 统/单调控制
统/单调开关SA11置于统调位置,此时,线圈KA12接通,生产系统处于统调状态,通过同步器,可以使#1~#4同时进行升速和降速调整。当拨到单调位置时,线圈KA12失电,同时线圈KA11通电,进入同步微调状态。这时可以调整该变频器及其以下的单元。
(3) 绷紧
当常开开关SA14闭合,此时线圈KA14通电,此时变频器会从外部得到一个瞬间稍高电压,控制该单元转速提升到正常水平;断开SA14,恢复的统调状态。
图3为由4个控制单元组成的生产系统接线图。
图3 由4个控制单元组成的控制系统
2.4 造纸机同步传动系统的PLC控制
采用欧姆龙公司的可编程序控制器CPM1A-40CDR-D对该造纸机同步系统进行改造[3][4],选择两个数字信号输入端X1和X2,通过功能预置,作为升速和降速之用,同时,把绷紧功能整合到各单元的单独微调;改造后的控制系统图如图4所示。
图4 采用PLC进行控制的同步系统
(1) 控制原理
变频器VFD-1至变频器VFD-4的FWD端在得到输入信号时,启动;失去信号时,停止;
变频器VFD-1的X1端子在统调升速和单调升速时得到信号,X2端子在统调降速和单调降速时得到信号;
变频器VFD-2的X1端子在统调升速、2~4单元的同步微调升速和单调升速时得到信号,X2端子在统调降速、2~4单元的同步微调降速和单调降速时得到信号;
变频器VFD-3的X1端子在统调升速、2~4单元的同步微调升速、3~4单元同步微调降速和单调升速时得到信号,X2端子在统调降速、2~4单元的同步微调降速、3~4单元同步微调降速和单调降速时得到信号;
变频器VFD-4的X1端子在统调升速、2~4单元的同步微调升速、3~4单元同步微调降速和单调升速时得到信号,X2端子在统调降速、2~4单元的同步微调降速、3~4单元同步微调降速和单调降速时得到信号。
(2) I/O分配
该型号PLC的输入端的I/O地址为:00000-00915;输出端的I/O地址为:01000-01915。
I/O分配表附表所示。
附表 I/O分配表
(3) 梯形图控制程序
造纸机同步系统的PLC控制梯形图如图5所示。
图5 造纸机同步系统的PLC控制梯形图
3 结束语
根据以上的设计,我们采用了欧姆龙公司的可编程序控制器CPM1A-40CDR-D、台达VED-B变频器和SCD同步器进行了造纸机同步系统的试验。在运行中效果良好,充分显示出其功能较强、构造简单、便于维护和检修、可靠性高等待点,达到了预期目的,具有广阔的应用空间。
1 引言
钢铁行业煤化工厂焦处理工艺存在着操作点多,设备分布比较松散的特点,在满足工艺要求的前提下,尽量减少劳动定员和劳动强度,是自动化工程技术人员的课题。随着信息技术和网络通讯技术的飞速发展,充分利用自动化及网络技术就可以得到解决。
2 工艺描述
在攀钢煤化工厂1#焦炉易地大修项目中,整个焦处理按工艺流程可分为运焦、筛焦和储焦、放焦、焦处理除尘等几部分,运焦主要是完成从新1#焦炉生产处理的焦炭及时运送出来;筛焦主要是将焦炭进行筛选分为小于5mm、5mm~10mm、10~25mm、25~80mm、大于80mm等几种不同规格的焦炭;储焦主要是对筛选后的焦炭按照不同大小分别储存放在不同的储焦仓内,放焦主要是根据炼铁厂的需要,把焦炭从储焦仓内放到皮带运输机上运送到不同的目的地,或者把焦炭从储焦仓内放到火车或汽车等运输工具将不同规格的焦碳输送给客户。另外,由于焦炭在使用皮带运送过程中粉尘较大,为了保护环境和现场工人的身心健康,该系统设计了一套除尘系统。
3 系统配置
攀钢煤化工焦处理工艺采用了施耐德电气公司的Quantum系列控制柜作为过程控制系统。各控制分站负责现场设备的数据采集和控制,并通过操作员站对现场设备的运行情况进行实时监控管理,可对整个系统的设备进行监视和集中控制。
3.1 系统硬件配置
PLC系统的硬件配置如图1所示。
图1 焦处理控制系统硬件配置网络图
(1) PLC控制柜
施耐德电气公司Modicon Quantum系列I/O架构可用于三种主要体系结构,以满足控制系统的要求:本地I/O、远程I/O(RIO)和分布式I/O(DIO),本系统采用远程I/O结构。由于所控制的设备比较分散、距离较远,另外,系统还采用光纤中继器的点对点RIO通信方式,这样可以增强整个网络的抗杂波干扰能力,提高整个控制系统数据交换的稳定性。
攀钢煤化工厂的焦处理控制系统共有5套PLC柜,其中1#主站安装有一块CPU板,其余均为I/O柜,并且1#、2#、5#柜内各有2个分站,所以本系统共有一个主站和7个分站。
主站有一块CPU板,它可与Concept软件兼容。为了便于与其他设备进行通讯,安装有一块以太网模块是140 NOE 771 11,它使用Ethernet TCP/IP协议与操作员站、工程师站进行通讯,它的传输速率为10/100Mbps。
系统上的每个分站都安装有一个MA-0185-100分支器进行,由于4#站和5#之间的距离较远,为了确保通讯顺畅,我们采用光纤、光纤中继器进行通讯。
(2) 操作员工作站
考虑到现场情况,本系统为实时监控网络结构,在中控室配有一台操作员站,具体配置如下:
CPU: pentium 4处理器,主频2.4GHz。硬盘:80G,内存:512Mb,网卡:100M,底板:PBP-13L4工业底板PW-300W,显示器:三星21"CRT纯平,52X光驱,1.44M软驱,带键盘和光电鼠标。
它与控制系统、工程师站组成以太网,可通过TCP/IP协议与INTERNET网络互连,使用户可以在任何地方,通过INTERNET对监控设备进行维护。
(3) 工程师站
工程师站的硬件配置与操作员站完全相同。当操作员站发生故障时,可以马上通过设定操作人员权限,将工程师站转换成为操作员工作站。
3.2 系统软件配置
(1) PLC控制系统软件
本系统采用Concept V2.6版本的软件包,它是基于bbbbbbs 2000平台的工业软件系统,具有功能强大的编程组态功能。Concept非常易于组态,所有地I/O模块均可通过Concept进行配置,在软件中为每个模块指定I/O地址,使得在配置中添加和更改模块极为简单,不必因物理位置更改应用程序。
具有所有5种IEC61131-3编程语言,分别为顺序功能图表、功能块图、梯形图、结构化文本、指令表。根据工艺需要,我们采用功能块图语言编制应用程序。
(2) 操作员站软件
本系统采用悉雅特公司的1500tag服务器版监控软件(带有Schneider Quantum IOServer)制作操作员监控画面。它是基于bbbbbbs 2000平台的工业软件,直接从PLC程序级输入标签定义,可以有效的缩短开发时间,达到快速、便捷、准确的目的,它可以自动更新标签,确保与控制系统同步进行,并保护数据的完整性,并支持当前所有的网络通讯协议,使得站与站之间的过程数据交换畅通无阻。
4 系统功能
4.1 控制功能
本系统由运输皮带机、振动筛、翻板等基本设备组成,利用控制设备、通讯模块、监控站等装置,达到皮带机、振动筛、翻板集中控制与监控的目的。具体实现的功能如下:
(1) 控制方式分集控自动、集控手动、就地三种方式可切换。正常生产时,使用集控自动方式,设备按工艺要求的顺序和流程由操作员站自动启停;集控手动时,可在操作员站操作各设备,有联锁和联动关系;在检修设备时采用就地方式,每台设备旁边均设有就地操作控制箱,有工作方式转换开关和就地起停钮便于在现场操作;
(2) 启动设备前由集控台发预警信号,预警30s后,若现场均满足集控自动启动条件,设备按顺序自动启动。现场可用停车钮停止启动过程;设备启动前发出预警信号,提示有关人员应立即远离设备;
(3) 按工艺要求,整个焦处理控制系统有22条料线,操作员可以根据来料的情况选择不同的料线,翻板自动切换到位,方便快捷。
(4) 皮带运输机装设拉线开关、跑偏保护、低速保护等,这些信号均接入集控系统,参加设备的紧急停车和联锁停车;以保证设备和人身安全;
(5) 对设备故障和工艺参数的异常实时报警,并进行声光提示。一般故障只报警,现场非正常停车或严重故障时,故障设备及其下游设备紧急停车,上游设备顺煤流延时联锁停车。
(6) 可根据皮带机系统的故障性质,进行紧急停机、顺序停机或发出报警声光信号;
4.2 监控功能
为了确保人员及设备的安全,操作员可在中控室的操作员站上集中监控整个焦处理的生产过程,完成对生产及相关环节的“遥测、遥信和遥控”,实现运输焦处理生产的综合自动化。具体实现的功能如下:
(1) 提供交互式全中文界面的操作平台,实时显示各条料线的设备设备运行状态;
(2) 根据工艺流程及联锁关系实现各条料线的自动/手动控制;
(3) 实时监测所有电机的电流、温度等参数。可以让维护人员及时发现一些机械设备的潜在故障隐患;
(4) 在操作员站上按照故障发生的时间顺序,集中显示所有控制设备的故障状态、故障类型、故障地点、等信息,便于维护人员查找故障,及时快速的处理故障;
(5) 为了保证人身安全,对故障报警信息进行安全确认,只有确认故障后,才能重新启动设备。
5 控制系统的特点
该系列的PLC是施耐德公司推出的综合自动化平台,具有模块化的、可扩充的结构,并且所有的模块都能带电插拔,任何模块没有槽位的限制,它特别适合工业及生产过程的实时控制。具体的特点如下:
(1) 选用的控制器较先进,系统的实时性好,可靠性高,数据处理速度快;
(2) 采用基于同轴电缆方案的远程I/O的体系结构,系统具有较高的安全性。系统扩展方便,可随时增加节点;
(3) Quantum系列控制柜内的通讯网络速度快,传输速率为1544Mbps,可靠性高;
(4) 操作员站界面直观友好,操作简便,功能齐全;
(5) 减少布线成本,由于采用远距离通讯网络,使布线更加方便,并大大减少电缆用量;
(6) 多种操作方式。控制方式有:集中联动、集中手动、就地手动方式,使系统操作灵活、可靠。在集中方式下,所有设备由中控室操作员通过操作员站进行操作;
(7) 多种流程选择。在联动方式下,可根据工艺选择运输流程,皮带启动按逆流方向,并根据皮带速度、长度延时开车,以免发生堆积焦炭的现象;
(8) 具有实时报警监视、安全确认机制和数据记录功能。对操作员素质无特殊要求,培训简单。
6 结束语
,该控制系统在焦处理工艺的实际应用中,性能稳定可靠,网络技术较成熟,能够满足生产的需要。自今年8月投入运行以来,系统运行稳定可靠,抗干扰能力强,操作维护方便,为焦炉的正常生产提供了可靠的保证。
1 引言
风洞是空气动力试验系统。它依据运动的相对性原理,将飞行器的模型或实物固定在地面人工环境中,人为制造气流流过,以此模拟空中各种复杂的飞行状态,获取试验数据。也可以说,风洞就是在地面上人为地创造一个“天空”。风洞是研制飞机必需的一种试验装置。它模拟飞机飞行中各种空气动力条件,只在地面就可以获取飞机在空中飞行时的各种参数。
气流的改变通过调节风洞系统中的风速,风速采用富士G11系列变频控制器,并配以编码器反馈完成高精度速度控制。可编程控制器(也称为PLC)工业控制部件因其功能强大、运算速度快、程序设计简单、修改程序灵活方便、可靠性高、抗干扰能力强以及能在恶劣的工业环境下长期工作等显著特点,已广泛应用于工业自动化控制的各个领域。但是其本身不具备人机交互功能,在工艺参数较多,需要人机交互时,配合使用具有触摸操作和通信功能的人机界面就是一种很好的选择。在本文所述的风洞调速系统中,变频器、PLC及人机界面之间以串行通信方式,可以在人机界面上直接对风洞内的风速、速压进行设定、控制及监视,并且可以通过趋势图随时观察气流改变时风洞内9个环境参数(温度、大气压、落压差等)的变化。该系统具有稳定、可靠性高的特点。
2 硬件配置设计
2.1 原理设计
图1是该系统的主要硬件组成图,应用于某风洞实验。
图1 系统主要硬件配置图
设定数据主要是风速,风速分为自动和手动调节两种方式。自动调节时,风速分15个等级,在POD上预先设定好每个等级的数据和工作时间后,按预先设定的等级的数据和时间让风速电机依次连续运行。手动时,POD随时由操作员调节风速电机的速度。通过传感器把风洞内的9个环境参数信号传给三个模拟输入单元。这9个环境参数分别是温度、实验段气压、落压差和力等。
对风速和速压两种方式可以任意选择和任意设定,根据流体力学[1],由公式:
Qi=k1ρVi2=k2△Pi ——i=1到15可任意选择(i为实验Vi或Qi点数)
ρ=k3P/(273+t) ——k1,k2,k3:常数,根据不同系统而定:
Qi——速压(kg/m2)
Vi——风速(m/s)
△Pi——落差压(mbar)
ρ——空气密度(kg*s2/m4)
t——温度(℃)
P——实验段气压(mbar)
可以计算Vi和Qi,也可以和风速的给定值进行比较。
2.2 配置设计
(1) 根据系统运行和控制要求,选用富士的MICREX-SX SPB系列PLC,其使用简单,功能强大,优性能价格比,能满足各种各样自动化控制需要,且具有尺寸小不受安装场所限制,大容量内存,高速指令功能;并提供了方便、简洁、开放的通信功能;可直接连接POD;使MICREX-SX SPB系列PLC可以很好的满足控制要求[2]。
(2) 人机界面选用带RS-485通信的富士UG430H-SS触摸屏,彩色,128色,10.4寸。进行参数的设定、显示[3]。
(3) 变频器选用富士的FRENIC5000G11S,该变频器具有低噪音、高性能、多功能以及带有RS-485通信接口等特点。配以编码器反馈完成高精度速度控制[4]。
3 系统软件设计
3.1 人机界面的软件设计
本系统人机界面所有画面均用UG00S-CWV3软件进行设计,分为操作画面和检测画面。有主画面、环境参数趋势图显示、风速的自动和手动设定等画面,经UG00S-CWV3编译无误后,从个人电脑中下载到人机界面,如果与PLC的通信能正常进行,并且PLC侧相应的程序也正确无误,则即可使用。人机界面通过RS-422通信电缆直接与与PLC编程器端口连接,实行命令设定型通信。根据来自人机界面的请求命令,可以实施PLC内部存储器的读写操作。PLC完成处理后,回送答复给外部设备。PLC侧不用特意编写通信程序。这里只介绍风速的自动和手动两个画面。
(1) 风速自动画面设计
风速的自动调节分为15个等级,每一个等级对应一个风速设定值和相应运行的时间。通过画面显示风速的当前值和系统的累计运行时间。
图2是设计的画面。画面中的自动调节风速是静态文字,对画面起到说明的作用,画面上所有静态文字的设计方法基本相同,设计时应在画面上合理布置,现以“自动调节风速”为例说明如下:在draw tool bar中选择[text],输入文字“自动调节风速”设定文字大小为Enlarge X:2;Enlarge Y:2,文字颜色为白色、透明。文字底下的方块、阴影,是在draw tool bar中选择[box]进行重叠的结果,它起到美化的作用,这里就不再详细说明[5]。
图2 风速自动调节画面
在工具栏中单击数值显示部件[Num.Data Display],出现Num.Display对话框,对该数值进行设置,Division No设为0,Memory设为$u0100,Display function设为Entry Target,放置到如图2等级1的下面。用同样的方法,在工具栏中单击数值显示部件[Num.Data Display],对该数值进行设置,Division No设为0,Memory设为D0120,Display function设为Entry Target。利用编辑菜单中的Multi Copy分别对上面设置的两个数值进行复制,复制时次序递增,存储单元地址递增,分别复制15个,放置的位置如图2。然后用Draw工具栏中的[Line]和[Text]画成表格的形式。
图3是对风速和时间设定时弹出的小窗口,在Item菜单中选择[Multi-Overlap],在出现的对话框中设窗口号为0,点击OK,进入多窗口设置画面,在工具栏中单击[Overlap],设置弹出窗口大小、颜色、类型,设好后点击OK放置到画面编辑区域里。在编辑区域内单击右键,选择Overlap0,工具栏中选择[Entry Mode],出现,点击左面的部件,通过设置把键盘到上一步的弹出窗口中。通过[Max]和[Min]在弹出窗口上可以显示每一个设定值的范围,这里就不再详细介绍了。
图3 风速和时间设定窗口
在图2的画面上设置了三个按钮,通过他们可以转到首页、手动调节风速、风压画面。自动调节风速的数值设好后,系统运行时指示灯亮。显示的当前值是根据前面的公式计算的结果,累计运行时间是从系统运行到停止的总的运行时间。
在依次自动执行15个风速段的程序设计中用到了宏命令模式。每一个风速值对应一个标志位,系统从个数值运行,当到达设定的运行时间后,第二个风速值对应的标志位置1,执行宏命令,把设定值送给变频器、风扇电机,按设定时间运行后,第三个风速值对应的标志位置1,下面的依此类推。
该人机界面内置日历,用来显示当前时间,也可是修改时间的显示格式。如图2右上角显示当前的年月日、日期和时间。
(2) 风速手动画面
图4为风速手动画面
图4 风速手动画面
在风速手动画面上,放置有加一减一键、左右移动键和输入键,通过它们可以改变设定的风速和时间值。
3.2 PLC的软件设计
用PLC编制的程序主要完成的功能有:对9路环境参数进行转换、运算;完成风速的自动、手动调节;PLC程序结构图如图5所示:
图5 程序结构图
PLC的程序和人机界面的画面设计相互配合来完成系统的功能。在整个系统软件的设计过程中,明显的特点是用了标志位。以风速自动调节为例,对15个等级采用了15个标志位,来分别完成对15个风速等级的控制[6]。
4 变频器功能参数的设置与控制方法
变频器通过RS-485通信线和人机界面相连,通过人机界面对风速电机进行调控[7]。变频器的接线图如图6。利用编码器、编码器反馈卡实现对风速电机转速的闭环控制。风洞风速用变频器的PID调节实现闭环控制。变频器主要功能参数的设置附表。
附表 变频器主要功能参数
图6 变频器接线图
5 系统调试
5.1 脱机调试
为了缩短现场调试时间,在安装之前先进行脱机调试。首先用下载线分别下载程序到PLC和人机界面,再用通信线RS-422把PLC和人机界面相连,上电检查PLC和人机界面能否正常通信。在调试中,遇到了通信出错的情况,通过改变PLC和人机界面的通信参数,后使它们能够正常通信。接下来把PLC和3个模拟输入单元相连,给模拟输入模块任意通道一个0~10V的电压信号,在PLC编程画面里的数据表中看相应的数字变换值,在调试中变换值正确,PLC和三个输入模拟单元连接正常。后,有485通信线连接变频器和人机界面,用人机界面显示变频器某个功能代码的值,在调试中,通信正常,并能正确显示功能代码的值。后,把按系统要求编制的程序下到PLC和人机界面里,PLC的输入接上开关量进行调试,调试通过。
5.2 现场调试
在脱机调试通过之后,进行带负荷,也就是带电机后的试运行调试。变频器和电机相连,上电,用变频器的键盘面板操作方式,分别按FWD正转键、REV反转键和STOP键,看电机是否运转正常。在现场调试中电机旋转方向正确,旋转平稳,加减速平稳。之后增加运行频率,继续试运行,电机运行正常。
6 结束语
由于当时的历史条件所决定,早期建设的低速风洞设备落后,自动化程度不高,这和当前科学技术迅猛发展的时代不相适应,必须对其进行技术改造。经过实际运行表明,针对某风洞改造实现的控制方案较好的达到了预期的效果