西门子6ES7223-1BH22-0XA8参数设置
1、引言
某设计院设计一轧钢生产线,共包括精轧A线、精轧B线、中轧线、粗轧区、定径机5部分。电气部分包括PLC、人机界面、变频器、低压电器及其他,由于此5部分生产线距离较远,所以选用5台人机界面来实现不同系统的操作显示,同时由一台PLC实现系统的控制,即N:1多重连接方式。此前该设计院对几个人机界面厂家的产品进行通讯试验,但结果均不理想,有的连接台数不够有的甚至通讯失败。
2、通讯方案选择
我们给用户提供两种方案:即上挂以太网、以RS-485方式直接通讯。
(1) 上挂以太网
因GE90-70本身可以上挂以太网,我们提出的方案是5台人机界面和PLC同时上挂以太网。人机界面选用富士电机新近推出的UG30系列产品,其中一款高性能的人机界面自带10M以太网接口,不需要任何配件即可建成基于以太网的网络系统,它本身具备通讯网关功能,从PLC到计算机或者从计算机到PLC的双向通讯都可以通过其收发数据,连接到以太网上的UG30和PLC之间可以进行N:N无协议通讯。人机界面选用UG330H-VH4,功能及特点如下:8.4寸、32768色 TFT、自带以太网接口、可以与市售的所有PLC通讯、还可以直接和变频器、温控表及串行打印机等外围设备进行通。
(2) 以RS-485方式直接通讯
由于GE90-70 PLC的通讯模块具有双通讯口,这样我们充分利用此两个通讯口分别挂2台和3台人机界面,均以RS-485方式通讯。
1#作为主机2#、3#作为从机,4#作为主机5#为从机,它们之间通讯距离大为500m,波特率为115200bps,主机和PLC的通讯波特率为19200bps,这样能够保证不会出现通讯滞后和通讯干扰现象。原来2#、3#、5#人机界面上需各加装一RS-485通讯模块,经过我们反复通讯试验后来取消了该通讯模块只要几根通讯电缆并联在一起即可以正常通讯,这样为用户节省了几千元的成本。人机界面选用UG320H-SC4,128色,7.7寸,在性价比上较UG330H-VH4合理些。
用户经过慎重考虑及多方调研后决定,在不影响使用功能的前提下选用价格经济合理的第二种方案。
3、人机界面画面略
4、通讯滞后的解决
当所有程序编制完成后,进行连机调试时出现了意想不到的通讯滞后想象,即当1#在操作画面2#、3#从显示画面切换到操作画面进行操作时人机界面和PLC双方出现明显的滞后,时间大概由2---3秒中,这在任何系统中都是不允许的,尤其在轧钢生产线上。通过多方分析我们提出如下建议,将人机界面中所有涉及到的PLC地址全部映射到人机界面的内部地址$u中,$u是人机界面中的用户内存,可以从$u0----$u16383共16384个字任意设定,例如PLC中寄存区R1----R10的数据可以映射到$u1----$u10中,这样通讯滞后现象消失。这些经验都值得我们在以后的通讯中应用。
结论
此方案已经成功应用于现场,在生产现场并没有出现通讯滞后以及通讯干扰现象。在占地面积庞大并由单台PLC控制的设备,如纺织机械、烟草机械等行业由极大的推广价值。
一、数据自动采集与检测
数据自动采集与检测主要分为两类;模拟量数据和数字量数据。
模拟量检测的数据主要有:水位、电机工作电流、水泵轴温、电机温度、liuliang;数字量检测的数据主要有:水泵高压启动柜真空断路器和电抗器柜真空接触器的状态、电动阀的工作状态与启闭位置、真空泵工作状态、电磁阀状态、水泵吸水管真空度及水泵出水口压力。
数据自动采集主要由PLC实现,PLC模拟量输入模块通过传感器连续检测水仓水位,将水位变化信号进行转换处理,计算出单位时间内不同水位段水位的上升速率,从而判断矿井的涌水量,控制排水泵的启停。电机电流、水泵轴温、电机温度、排水管liuliang等传感器与变送器,主要用于监测水泵、电机的运行状况,超限报警,以避免水泵和电机损坏。PLC的数字量输入模块将各种开关量信号采集到PLC中作为逻辑处理的条件和依据,控制排水泵的启停。
在数据采集过程中,模拟量信号的处理是将模拟信号变换成数字信号(A/D转换),其变换速度由采样定律确定。一般情况下,采样频率应为模拟信号中高频率成分的2倍以上,这样经A/D变换的精度可完全恢复到原来的模拟信号精度。A/D变换的精度取决于A/D变换器的位数。同时,PLC所采用的A/D模块均以积分方式变换,可使输入信号的尖峰噪音和感应噪声平均化,适用于噪音严重的工业场所。
二、系统功能及特点
(1)、PLC控制程序采用模块化结构,系统可按程序模块分段调试,分段运行。该程序结构具有清晰、简捷、易懂,便于模拟调试,运行速度快等特点。
(2)、系统根据水位和压力控制原则,自动实现水泵的轮换工作,延长了水泵的使用寿命。
(3)、系统可根据投入运行泵组的位置,自动选择启动就近的真空泵,若在程序设定的时间内达不到真空度,便自动启动备用真空泵。
(4)、系统根据电网负荷和供电部门所规定的平段、谷段、峰段供电电价时间段,以“避峰填谷”原则确定开、停水泵时间,从而合理地利用电网信息,tigao矿井的电网运行质量。
(5)、PLC自动检测水位信号,计算单位时间内不同水位段水位的上升速率,从而判断矿井的涌水量,自动投入和退出水泵运行台数,合理地调度水泵运行。
(6)、在触摸屏上动态监控水泵及其附属设备的运行状况,实时显示水位、liuliang、压力、温度、电流、电压等参数,超限报警,故障画面自动弹出,故障点自动闪烁。具有故障记录,历史数据查询等功能。
(7)、系统具有通讯接口功能,PLC可同时与触摸屏及地面监测监控主机通讯,传送数据,交换信息,实现遥测遥控功能。
(8)、系统保护功能有以下几种。
超温保护:水泵长期运行,当轴承温度或定子温度超出允许值时,通过温度保护装置及PLC实现超限报警。
liuliang保护:当水泵启动后或正常运行时,如liuliang达不到正常值,通过liuliang保护装置使本台水泵停车,自动转换为启动另一台水泵。
电动机故障:利用PLC及触摸屏监视水泵电机过电流、漏电、低电压等电气故障,并参与控
电动闸阀故障:由电动机综保监视闸阀电机的过载、短路、漏电、断相等故障,并参与水泵的联锁控制。
(9)、系统控制具有自动、半自动和手动检3种工作方式。
三、 系统方案
1、生产流程分析
以一座装机容量为6台37kW的某小型排涝抽水泵站为例,其作业流程如图1所示。
该类型泵站主要以水泵轮流循环作业,根据泵站进水前池来水量及水位高低,自动调整投运水泵数量,保持进水前池水位处于一个相对稳定的预定设定点。
2、工艺流程对系统的要求
(1)、 水泵启动数量、运行时间:根据进水前池来水量及进水前池水位确定启动水泵数量和运行时间。
(2)、水泵的启停、循环:要求系统能够实现在不需要6台水泵同时开机运行的情况下,以每一时段分别增、减1台水泵的方式实现一个循环周期内每台机组开停机时间相同,避免有的机组连续工作时间过长,有的机组运行时间过少,有效避免有的机组过度磨损,有的机组则长期停机的情况。
(3)、电气控制:要求水泵不能在过短时间内频繁启停,影响配电系统稳定。在水泵启动及运行过程中均有可靠、合理的过载、过流保护,具有低水位保护、高水位报警、大来水liuliang预警、水位连续测量功能。
3、系统结构
系统主要由:PLC主控模块,电源模块,触摸显示屏,开关量、模拟量输入、输出模块,现场仪表以及其他辅助设备组成。结构见图2。
(1)、 PLC主控模块:负责发出和接收各种运行程序指令,是整个控制系统的中枢部分,要求具有高可靠性和稳定性。
(2)、电源模块:稳定可靠的电源供应是整个系统安全、可靠运行的重要条件,要求电源模块稳定、可靠,留有一定的功率余量。
2.3.3 触摸显示屏:触摸显示屏是整个系统中人机对话的界面设备,要求耐用、美观,能清晰显示各种运行、设定等信息。
2.3.4 开关量、模拟量输入、输出模块:该部分是PLC装置正确接收信息和发出指令的关键设备,要求有高可靠性、稳定性,能实现某些电、磁的隔离功能。
2.3.5 现场仪表:PLC系统通过接收现场仪表设备发出的信号判断被控制设备的运行状态,以及是否适于设备运行的运行环境条件,因此要求现场仪表设备具有高可靠性和稳定性、jingque性。
2.3.6 其他辅助设备:辅助设备如冷却风扇、UPS不间断电源等是完善整个系统所必须的,对tigao系统的可靠性和使用寿命有较大的帮助。
2.4 系统选型方案实例
以已投入运行的某防洪排涝泵站为例,主控模块选用三菱FX2N-48MR型PLC模块;开关量扩展模块和模拟量扩展模块分别选用三菱FX2N-16EX和FX2N-4AD型;触摸屏选用10英寸16色彩色触摸屏。接线原理见图3。
4 结束语
可编程序控制器(PLC)小型自控系统具有造价低廉,可靠性高,能耗低,适用于各种环境条件下运行等优点,并且在系统硬件组成不变的情况下通过更改软件设置来适应多种工艺运行方式的需要,是传统继电器控制
1 PLC 、IPC、PC-Based PLC
随着PC技术的飞速发展,使得IPC(工业控制计算机)以及基于IPC的应用技术同样也得到了突飞猛进的发展。同时,随着Internet技术的应用和所有生产信息过程和控制信息过程的集成与发展,并可通过Internet/Intranet浏览生产过程信息流中的制造过程、操作和监控现场智能设备等,IPC越来越多地承担着SCADA的人机交互控制任务和协同下级小型控制器或智能现场设备的控制任务。总体而言,IPC还是适合应用于自动化控制平台的。但作为传统主流控制器的PLC,它拥有稳定性好、可靠性高、逻辑顺序控制能力强等优点,在自动化控制领域具有的优势。但有一大遗憾:其封闭式架构、封闭式系统(研发必须具备自己或OEM的CPU、芯片组、BIOS、操作系统、梯形图编程软件)、较差的开放性势必会造成其应用上的壁垒,也增加了用户维修的难度和集成的成本。有人断言,在不久的将来,基于PC的控制器将会逐步取代PLC而成为主流控制设备。为了改善这种局面,传统PLC生产厂家正在逐步将PLC的功能PC化(如Siemens的WinAC)、而IPC厂家也逐步将IPC的逻辑控制功能PLC化,使PLC和IPC在功能和规格方面越来越接近,由此就出现了基于PLC和IPC技术的中间控制器:PC-Based PLC。
PC-Based PLC也称嵌入式控制器,它不再像IPC那样以机箱加主板为主体结构,再搭配诸如A/D、D/A、DI/DO等功能I/O板卡的组合产品,而是一个独立的基于嵌入式PC技术的专用系统,适合应用于小型的SCADA系统。如泓格的I-8000系列, 其主机内部是40MHz主频的 80188 CPU,操作系统为兼容DOS的MiniOS7,其编程环境是基于PC的标准C语言程序,程序开发过程与PLC极其相似:首先在PC上编写常驻任务程序,并将其编译好后传送到主机内的Flash上、再让其脱机运行。另外为了使其具备PLC的优势特性,PC-Based PLC也可使用梯形图编程,如泓格的ISaGRAF(配合I-8417/8817主机),相对于PLC而言,PC-Based PLC的优势在于拥有IPC强大的 Computing、Data Processing和Communication功能,在软件方面,PC-Based PLC支持IEC- 61131-3(LD、SFC、FBD、IL、ST)的五种语言和软逻辑。由于以上特点,PC-Based PLC将会更加开放和标准化,能适应更加复杂的控制和管控一体化信息的需求。
总的来说,IPC是开放式架构、开放式系统,PLC则是封闭式架构、封闭式系统,而PC-Based PLC介于二者之间,是开放式架构、封闭式系统。严格地说,IPC一般承担着管理控制任务和协同下级小型控制器或智能现场设备的控制任务,而PLC一般用作现地控制器。由于PC技术、信息技术、通信技术的交替发展,使得研发PC-Based PLC的投资相对减少,会有更多的厂家来共同推进PC-Based PLC的发展。因此,PC- Based PLC会有非常好的发展前景,但这并不意味着在短时间内PC-Based PLC会取代PLC,PLC和PC-Based PLC将会在竞争的发展中逐渐走向融合[1 、2]。
2 基于PC-Based PLC架构系统的应用技巧
2.1 AI模块
AI(Analog bbbbbs)的多寡对系统的运行的实时性和稳定性有较大的影响,尤其是当AI模块较多时其影响更大。主要原因为:I- 8000模块的CPU仅仅是一款主频只有40MHz的80188的控制器,其数据处理能力、存储空间有限,导致其运算、逻辑处理以及事件响应的快速性就没有IPC那么强大,由于CPU要完成一次A/D的整个过程必须要进行采样、保持、同步、转换、存储、处理以及运算等一系列的过程方可完成,比较费时,因此,当要完成的AI通道数较多时,必然会影响采样的实时性和系统的稳定性。通常而言,在一个I-8000模块中,一般不要超过两块如I-8017H系列的 AI模块为佳。
2.2 继电器输出模块
继电器输出模块对整个系统的影响大,处理不好,将会导致整个系统崩溃和经常出现当机、主机板烧坏等现象,由于I-8000模块的供电一般为 10~30VDC,总的输入功率为20W,不像IPC的输入功率为250W那么大,假如继电器输出模块尤其是大功率继电器模块插放的太多,由于系统供电能量不足,将会导致其输出不正常,控制系统经常误动作,导致系统崩溃、当机,甚至会导致主控板烧坏,使系统的稳定性、安全性以及可靠性存在许多隐患因素。一般而言,像I-8060、I-8058、I-8063、I-8064、I-8065、I-8066、I-8068、I-8069等不要超过两块,尤其是 I-8060、I-8063、I-8064、I-8065、I-8069这些功率模块好为一块。假如系统要控制的功率继电器较多,可以采用普通光隔开关量输入/输出模块如I-8042利用多级放大的原理连接。
2.3 通信处理
在由PC-Based PLC架构的控制系统为重要的一个环节便是与上位机进行的实时数据通信过程,而这一环节往往是制约系统实时性和稳定性的因素,它容易出现数据瓶颈。因为上位机通常为bbbbbbs操作系统,应用程序一般有人机交互界面和实时显示界面,而往往将人机交互界面和实时显示界面设计为前台窗口,数据通信、分析以及存储设计为后台运行,但bbbbbbs 并不是作为实时操作系统设计的,是抢先式、多任务、基于消息传递机制的操作系统,但仅凭消息调度机制,显然不能满足实时系统的要求,难以保证准确实时地完成前后台控制任务。因此在bbbbbbs环境中,采用多线程技术,可以有效地利用bbbbbbs等待时间,加快程序的反应速度,tigao执行效率。用一个线程管理计算机数据通信,另一个线程进行数据处理、分析与存储,这样在满足数据连续采集的同时,增强了系统事件响应和通信控制的实时性。
PC-Based PLC与上位机一般采用RS-485、CAN、ModBus或者Ethernet,假如采用RS-485、CAN、 ModBus时,则要合理分配通信口,一般RS-485、CAN、ModBus的通信适配器卡有两个口,因此假如控制系统有两个I-8000模块,上位机可以采用一个通信口与两个下级控制器通信,但是假如有四、六个……,好将其分成两组,上位机则采用两个通信口分别与其通信,上位机采用两个线程编写通信程序,配置图见图1所示。
图1:配置图
2.4 电源配置
假如一个控制系统有多块I-8000模块,考虑到系统的经济性以及安全性,好每两块I-8000公用一个开关或者线性电源,考虑到电源本身的功耗,此时电源的功率必须大于60W,并且每个电源模块分别接入~220VAC或者~380VAC的电源,千万不要串接。选择开关电源时要注意选用系统功率因数大于0.99且纹波电压Vrms≤1.0%、纹波系数≤0.2%的功率密度大、电磁兼容性好、低纹波开关电源。同时将控制器I/O通道和其它设备的供电采用各自的隔离变压器分离开来,有助于tigao控制系统的抗干扰能力。
2.5 信号地的处理
正确、良好的接地可以将混入电源和I/O电路的干扰信号引入大地,消除或减小干扰的影响,是安全保护和抑制噪声的重要手段,对tigaoI-8000 系统的稳定性、可靠性极其重要。为了尽可能减小电磁噪声影响,电源回路和控制回路要分别设立接地极。在控制系统中难免有变频器之类的功率器件,注意要将变频器散热器、电源中性线、变频器外壳和中性端、电机外壳和Y型接法中性端要可靠接于电源回路接地极上,所有接地线不可形成接地回路。变频器接地电阻越小越好,接地导线截面积应不小于4mm2,长度应控制在20m以内。屏蔽层、数字信号地接于控制回路接地极。为防止形成回路,屏蔽层应单端接地。控制器的接地线与电源线、动力线分开。I-8000好单独接地,也可以与其他设备公共接地,但严禁与其他设备串联接地。
3 实际应用案例
在小型石油公司中,要进行大量的油料计量工作如轻油、0#汽油、90#汽油等,其计量过程往往是车队从货运站拖回公司后经公司磅房过磅称毛重、卸料、车辆出厂时,再过磅称车重等等,过磅过程、手续、登记极其繁琐,有时还容易出现错磅和漏磅现象,极不容易管理,并且给统计、计量工作带来了极大的困难,过磅工人的劳动强度大,经常出现车队排队过磅的现象,办事效率极其低下,为改变这种局势,采用PC-Based PLC I-8411嵌入式控制,并配以模拟信号输入模块I-8017H、模拟信号输出模块I-8024、光隔离数字输入/输出模块I-8042、I-8060继电器输出模块以及 RS232/RS485转换器I-7520,并利用计算机控制技术,为其不同的油料的进站计量、出站计量、统计等开发了一套分布式的油料计量、统计管理系统,省时又省力,深得用户喜爱。系统架构图件图2所示。
。图2:基于I-8411的分布式计量架构图
3.1 功能模块
1) 利用I-8017H的差分输入的6路分别采集运输车油罐的液位、液体温度、两个LUGB系列涡街liuliang变送器的liuliang值(备计算用,取两个liuliang计的平均值作为真正的liuliang值)、存储油罐的液位值以防液体溢出、温度等;
2) 利用I-8024的D/A功能,输出0~10V的直流信号作为Siemens公司的Micro Master通用型变频器的变频控制输入信号,以使变频器能进行V/F转换,变成0~50Hz的交变信号实时控制三相异步电机,达到使电机变频运行、促使液体恒速流动的目的。
3) 利用I-8060功率继电器输出信号实时控制各种liuliang继电器、liuliang控制电磁阀、电气接触器的开启;
4) 利用I-8042的数字I/O进行各种开关的检测与控制,同时实时检测liuliang继电器、liuliang控制电磁阀、电气接触器的闭合状态
5) 利用I-7520作为RS-232/RS-485的转换器,使I-8411与上位机服务器的串口进行数据通信。
3.2 安全可靠措施
1) 尖峰脉冲的处理:由于在本系统中用到了大型的可控硅,其闭合与断开要产生巨大能量的尖峰脉冲,这一脉冲一旦进入信号系统中,不仅会引起控制系统的误动作,更为甚者,会烧坏控制设备、死锁控制信号输入通道。尤其是对I-8017H、I-8024、I-8042等模块影响较大,为了减少其影响,在每个控制模块的输入或输出端加入一阻容保护电路,以吸收其尖峰脉冲。同时信号地和电源地要分开。
2) 变频器过压的处理:在本系统中利用变频器拖动大惯性的牵引电机,由于变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现过压故障。因此必须增加再生制动单元,否则会干扰SCADA系统。
3.3 系统功能
1) 数据显示:对每种油料以数字、棒图、曲线的方式显示实时采集的liuliang、温度、开关状态、电机转速等各项参数;
2) 可进行liuliang和总量的计算,生成日报、月报、年报等;并可存储多年的历史记录;
3) 数据修复维护:具有参数设置和数据丢失修复功能。
4) 与公司的MIS系统实时交换数据
WINCC与S7 PLC通过MPI协议通讯时,在PLC侧不须进行任何编程和组态;在WINCC上要对S7 CPU的站地址和槽号及网卡组态。
1、PC机上MPI网卡的安装和设置
首先,将MPI网卡CP5611插入PC机上并不固定好,然后,启动计算机,在PC机的控制面板中双击“Setting PG/PC interface”图表,弹出窗口中就会显示已安装的网卡,例如下图所示的是CP5611网卡安装后的界面:
2、在WINCC上添加SIAMTIC S7通讯协议
网卡安装正确后,打开WINCC,选择“Tag Management”击右键选择“Add New driver”,再弹出窗口中选择”SIAMTIC S7 protocol suite”连接驱动,将其添加到”Tag Management”向下,如下图:
S7协议组包括在不同网络上应用的S7协议,如MPI网,PROFIBUS网,以及工业以太网等,在这些网络上,应用层是S7协议,这里我们通过MPI网通讯。
3、在WINCC通讯连接参数设置
选择MPI通讯协议并按右键选择“System bbbbbeter”进入如下图系统参数设置界面:
4、在WINCC上建立通讯连接
选择MPI通讯驱动并按右键选择“New driver connection”建立一个连接,如果连接多个CPU,每连接一个CPU就需要建立一个连接,所能连接的CPU的数量与上位机所用网卡有关,例如CP5611所能支持的大连接数是8个,网卡的连接数可以在手册中查找。这里需要修改每个连接的属性,如选择CPU的站地址和槽号等,具体如下图:
连接S7-300 CPU时槽号都是2,连接S7-400 CPU时,槽号应参照STEP7硬件组态中的槽号,所有这些工作完成之后通讯就可直接以建立起来。
5、通讯诊断
如果此时通讯有问题,应检查网卡是否安装正确,通讯电缆和接头是否接触良好,组态参数是否正确等,如果使用CP5511,CP5611或CP5613通讯卡,诊断起来就比较简单,在PC机的控制面板PG/PC接口中,利用这些CP
自身的诊断功能读就能出MPI网络上所以站地址,具体可参见下图:
如果CP5611的站地址是0,CPU的MPI的站地址是4,其诊断结果是0,4站被读出来,这样就可以判断连接电缆和插头是否接触良好,若网卡及站地址都没有错误,则WINCC的组态参数肯定有问题,须对此做进一步检查。
如果用户通讯使用的是PC adapter而不是上面提到的专用通讯卡,则问题的诊断就比较麻烦。