西门子6ES7212-1AB23-0XB8参数设置
目前国内大多数锅炉汽包水位都采用串级三冲量调节系统控制。锅炉燃料是炼铁过程中产生的尾气,其可燃成分主要是CO。受高炉炉况的影响,尾气压力及CO含量时常变化,锅炉的燃烧状况也随之变化,汽包水位及蒸汽压力变化较大,串级三冲量调节系统不能保证汽包水位在规定的范围内,只能采用手动方式,通过电动执行机构,调节管道阀门的开度来改变给水liuliang,以维持汽包水位在规定的范围内。这种方式不仅调节不便,而且浪费大量电能。工业蒸汽锅炉的过程控制系统包括汽包水位控制系统和燃烧过程控制系统,两系统在锅炉运行过程中互相耦合,需要较高的控制水平才能达到有效运行。
结合国内某中型电厂的2台30T燃煤蒸汽锅炉,这2台锅炉通过1个给水母管分别给各自汽包供水,用汽量小的季节,2台锅炉只运行1台,当用汽量较大时,则必须2台锅炉同时运行。由于给水泵额定功率为37kw,一般情况下,1台锅炉运行时,只开1台给水泵余量仍较大,而2台锅炉同时运行且用汽量较大时,只开1台给水泵无法满足需要,而开2台给水泵后,相对单台锅炉运行时,余量更大。由于2台锅炉分别由2套DCS系统控制各自的电动阀门调节各自汽包的给水量,运行中,阀门开度较小造成给水母管压力较大,不仅浪费了大量的电能,较高的水压还可能对管道、水泵叶轮和阀门造成损害。如图1所示。
图1 给水原理图
2 系统分析及设计
变频技术以其在节能与恒压方面的优越性能可以解决水压控制系统存在的以上问题。考虑选用单片机或PLC与变频器结合为核心构成的系统都能达到较好的控制效果。但在软件设计上,PLC比单片机的编程更简洁、直观;从硬件接口考虑,单片机电路稍微复杂一些;从经济方面考虑,由于PLC工艺的日渐成熟,要根据现场情况调整系统参数,PLC的软件中时间参数的调整更简单,这样更有利于售后服务人员掌握。基于系统运行现状,本着既能节能降耗,又能控制简便、安全且投资较少的原则,选用了西门子MM430变频器和罗克韦尔PLC-5型PLC作为控制核心,再加上PSW7调节器与WSP300压力变送器,控制效果非常好,软件设计简单,硬件接口简易可行、可靠性高,整个系统的性价比非常高。具体如图2所示。
图2 控制原理图
在本方案中,充分利用了锅炉层有的DCS控制系统,同时增加了变频器、可编程序控制器(PLC)和控制信号转换装置。
2.1硬件控制系统
(1) 罗克韦尔PLC-5型PLC
我们选择的PLC-5/40E CPU,内存容量大,数据处理能力强,网络功能强大,带有以太网网口,不需要额外以太网通讯模块。
PLC-5/40E CPU使用钥匙开关改变处理器操作模式:
RUN(运行)
运行模式下,用户不能创建或删除程序文件,创建或删除数据文件,或编程软件改变操作模式。
PROG(编程)
编程模式时,用软件编程不能改变操作模式
REM(远程)
编程软件,远程编程、远程测试、远程运行模式之间改变。
RSLogix 5编程软件具有可靠通讯能力、强大编程功能和卓越诊断能力和监控能力,以及运行控制功能:
诊断和故障查找工具
可靠通讯功能
统一项目视图
灵活梯形图逻辑
符号编程
可选梯形图视图
容易通信组态
利用RSLogix 5梯形逻辑编程软件,可以优化系统性能,节省项目开发时间,tigao生产率。上位机监控软件RSView32是罗克韦尔自动化公司推出组态软件平台,它使用方便,可以构造灵活界面和强大功能,用RSView32组态软件能开发出较强组合画面:
快速灵活画面切换
灵活有效报警方式
强大功能和简单直观操作方式
灵活实用设置功能
实用管理功能
因此,利用上位机监控软件RSView32,坐中央控制室,就可以监控现一切机械化设备,对现场生产情况一目了然。
(2) 西门子MM430变频器
MM430变频器是西门子公司新研制生产的一种适用于各种变速驱动应用场合的高性能变频器(调试简单、配置灵活),它具有新的IGBT技术和高质量控制系统,完善的保护功能和较强的过载能力以及较宽的工作环境温度,安装接线方便,两路可编程的隔离数字输入、输出接口以及模拟输入、输出接口等优点,使其配置灵活多样,控制简单方便。
2.2运行分析
(1) 当1台锅炉运行时
由于只开1台给水泵,就足够锅炉汽包所需用水量,故此时,系统只对运行锅炉的汽包水位进行恒液位控制即可。将切换开关置于相应位置,通过锅炉原有DCS控制系统中的手动操作器将控制该锅炉汽包进水量的电动阀完全打开后,再通过控制信号转换装置切断该控制信号,使原有控制回路断开,电动阀保持全开状态,同时,将该锅炉汽包液位信号切入PLC,让PLC将该锅炉汽包液位信号进行PID运算处理后,再由控制信号转换装置,将PLC输出的4~20mA模拟信号传递给变频器,从而控制变频器的输出转速。
在本控制过程中,关键的问题是过程参数PID (P:比例系数I:积分系数、D:微分系数)的整定。由于工业锅炉运行过程中,用汽量的多小和蒸汽压力的大小,决定了给水liuliang的大小和给水压力的大小。为了保证系统的相对稳定运行,不出现大的波动,对生产造成影响,在调试过程中,应多次反复调整PID参数,直至出现佳控制过程。
(2) 当两台锅炉同进运行时
由于2台锅炉分别由两套DCS系统控制,在运行过程,虽然蒸汽并网后压力相同,但由于燃烧过程中存在不确定性,两台锅炉汽包各自的液位就必然存在差异。因此,单台锅炉运行中所用的恒液位控制方案在此就不再适合。通过给水原理图(图1)我们不难发现,要对2台锅炉汽包的液位分别控制,理想的方案是将1个给水母管向2台锅炉给水的现状彻底改变,将给水系统分开,使每个锅炉都有自己独立的给水系统,再在此基础上加装变频控制,由1台变频器单独控制1台锅炉的给水。但此方案不仅改动较大,投资较高,且要停产改造,显然是行不通的。为了能在不改变原有系统现状的前提下,更好的利用变频装置,节能降耗,减小系统运行,维护费用,tigao原有系统的自动化程度,我们针对该企业2台锅炉的运行特点,设计了一套专用于2台(或2台以上)锅炉同时运行时的控制方案,即:蒸汽压力和母管给水压力的恒压差控制方案。
当2台锅炉同时运行时,由于外供蒸汽并管,故蒸汽压力相同,又由于2锅炉由同一母管给水,故给水压力也相同。但由于蒸汽用量的变化不定和锅炉燃烧情况的不同,蒸汽压力是时刻变化的。这样,为了能保证给锅炉汽包供上水,就必须要求给水的压力始终高于蒸汽压力,由图2我们看到,由PLC采集蒸汽压力和母管给水压力,通过处理、比较后,得到二者的差值,再将此差值通过PID运算处理,输出4~20mA的模拟信号给控制信号转换装置。再由该装置将信号传输给变频器,从而控制变频器的运行速度。这样虽然可以保证给水母管压力始终高于锅炉蒸汽压力(压力差的大小可以通过PLC在一定范围内任意调节),但锅炉各自汽包的液位却无法再通过调节变频器的转速去控制。在此,我们充分利用了原有给水控制装置,即汽包各自的进水电动阀门。仍由锅炉原有DCS控制系统采集各自汽包的液位,蒸汽压力,给水压力和给水liuliang等信号,去相应的调整进水电动阀的开度,从而控制各汽泡液位和进水liuliang。
此方案由于存在阀门的调节,所以理论上不能大限度的节能降耗,但实际应用中,由于减小了给水母管与蒸汽压力之间的压力差,使电动阀门的开度由原来的平均10%左右开大到75%左右,系统回水阀门关闭,仍大大节约了能源。且本方案充分考虑了系统运行的安全性,一旦变频器故障,系统可立即自动由变频运行状态切换至原有工频运行状态,完全恢复改造前的运行状态,保证锅炉正常运行。变频故障解除后,仍可方便的手动切换为变频状态,使变频器方便的投入运行,且不影响锅炉的运行。
3 PLC控制系统介绍
罗克韦尔PLC-5是本系统的核心控制器件,它不仅辨识、处理各种运行状态,进行系统间的逻辑运算和联锁保护,还对输入的多个模拟信号进行处理、运算后,输出标准的模拟信号控制变频器的运行速度。主程序结构较复杂,其中,对液位信号进行PID运算的子程序,原理图和程序框图如图3、图4所示。
图3 PID原理图
图4 程序流程框图
4 注意事项
4.1隔离
周密完善地考虑器件或设备的布置及布线,并尽量增大干扰源与受扰电路之间的距离,将大大降低干扰的传播,减少系统的故障率。在实际安装布线时,应按其对干扰的灵敏度或按其本身功率的大小分门别类的进行处理,布置的顺序是:低电平模拟信号,一般数字信号,交流控制装置,直流动力装置,交流动力装置等。按照这样的顺序布置使其相互隔开,保持一定距离,在安装场合受到限制、设备要求体积小的情况下,还需要增加以下措施。
(1)使所有的信号线很好地绝缘,使其不可能漏电,这样,防止由于接触引入的干扰;
(2)将不同种类的信号线隔离铺设(在不同一电缆槽中,或用隔板隔开),我们可以根据信号不同类型将其按抗噪声干扰的能力分成几等。
(3)模拟量信号(模人、摸出,特别是低电平的模人信号如热电偶信号,热电阻信号等)对高频的脉冲信号的抗干扰能力是很差的。建议用屏蔽双绞线连接,且这些信号线必须单独占用电线管或电缆槽,不可与其它信号在同一电缆管(或槽)中走线。
(4)低电平的开关信号(一些状态干结点信号),数据通信线路(RS232、EIA485等),对低频的脉冲信号的抗干扰能力比上种信号要强,但建议好采用屏蔽双绞线(至少用双绞线)连接。此类信号也要单独走线,不可和动力线和大负载信号线在一起平行走线。
(5)高电平(或大电流)的开关量的输入输出、CATV、电话线,以及其它继电器输入输出信号,这类信号的抗干扰能力又强于以上两种,但这些信号会干扰别的信号,因此建议用双绞线连接,也单独走电缆管或电缆槽。
4.2屏蔽
屏蔽干扰源是抑制干扰的有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路的输入和输出线及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。
4.3联锁
锅炉给水是锅炉运行过程中至关重要的环节之一,其运行的稳定性与可靠性直接关系到整个锅炉系统乃至整个企业生产运行的稳定与安全。因此,一旦变频器出现故障而停车后,系统可自动切换至原有工频控制系统而不影响生产,这一联锁措施至关重要。
5 结束语
经过实际的调试和运行实践证明,采用罗克韦尔自动化公司产品和技术实现的该系统在国内某中型电厂锅炉给水控制系统的实际运行中,取得良好的效果,并获得用户的。
(1)该系统节能效果显著,自投入运行以来冬夏两季日均节电约35%。
(2)该系统大大降低了操作工人的操作难度,减少了运行故障率,减少了检修次数。
(3)能合理地应用设备,tigao整个系统的运行效率,tigao设备运行寿命。
1 引言
拉丝机是金属加工行业主要加工设备之一,主要是将粗线加工成各种规格细线,一般由放线、水冷、收线等部分组成,其中电气传动部份主要由拉线电机和收线电机实现。通过PLC来实现拉拔速度设定、操作自动化、生产过程控制、实时闭环控制、自动计米等功能。通过变频器来控制电机的转速。
2 直进式拉丝机变频控制系统
该直进式拉丝机主要对精轧出来的不锈钢丝进行牵伸,设计的工艺要求为:(1)高拉丝速度18m/s;(2)加工品种主要是进线Ф6mm→出线Ф2mm(3)停车不能有断头(紧急停车除外)。
直进式拉丝机是拉丝机中难控制的一种,由于它是多台电机同时对金属丝进行拉伸,作业的效率很高。不像以前经常遇到的水箱拉丝机和活套式拉丝机,允许金属丝在各道模具之间打滑。由于比较容易在作业过程中拉断,它对电机的同步性以及动态响应的快速性都有较高的要求。本系统共有六个的转鼓,每个转鼓由一台变频器控制并带有机械制动装置,和一个收线电机。每个转鼓之间安装有用于检测位置的气缸摆臂,采用位移传感器可以检测出摆臂的位置,当丝拉得紧的时候,丝会在摆臂的气缸上面产生压力使得摆臂内移。
3 控制工艺原理
该直线式拉丝机控制系统主要分为:点动、联动、加速启动、自动工作和刹车五部分组成。
1) 点动:点动分为前转和后转。当踩下点动脚踏开关时,所选控电机以固定的转速运行,使每个转鼓上的线绕紧。
2) 联动:联动分为前联和后联。台转鼓没有前联,第六台转鼓没有后联,中间四台转鼓前联和后联都有。当踩下前联开关时,所选控电机及之前的电机一起转动绕丝;当踩下后联开关时,所选控电机及之后的电机一起转动绕丝。当联动时,电机以某一固定速度旋转。
3) 加速启动:加速启动与联动类似,但没有前后之分,当按下加速按钮时,所选择电机及之前的电机加速启动到设定的速度。
4) 自动启动:当把线全部绕到转鼓上时,按下启动按钮,所有电机一起加速启动,通过PLC里面的PID来调节各个电机的转速,保证在高速运行的状态下不会拉断丝,直到速度达到设定值,收线机也一起运行。当按下停止按钮时,所有电机减速停止。
5) 刹车及急停:当停车状态下,为了防止断线,所有转鼓不允许转动。当在运行状态下,如果发生断线,所有的转鼓要立即停止,防止发生意外。
4 控制系统介绍
控制系统上位机采用和利时HT6600C系列触摸屏,下位机CPU选用和利时LM3109 PLC控制器,上、下位机之间通过RS485进行通讯。通过逻辑编程处理来自触摸屏以及按钮、传感器等信号,控制6台变频器。图3为控制系统配置图。
图3 控制系统配置图
4.1可编程控制器部分
本系统采用HOLLiAS LM系列PLC控制,配置1个CPU模块LM3109、1个16通道数字量输入模块LM3212、1个8通道数字量输出模块LM3222、1个8通道模拟量输入模块LM3313和3个2通道模拟量输出模块LM3320。
1)CPU模块:LM3109模块的额定工作电压为AC220V,自带40点I/O,提供24路DC24V输入/16路继电器输出。具有1个RS232和1个RS485通讯接口,支持专有协议(仅RS232)/Modbus RTU协议/自由协议。
2)数字量扩展模块:LM3212模块是16路数字量输入处理通道,主要完成数字量信号处理,数字量输入信号的额定工作电压为24VDC。LM3222模块是8路数字量输出处理通道,主要完成触点型数字量的输出处理工作,输出额定负载的电压为24VDC或220VAC。
3)模拟量扩展模块:LM3313模块提供8通道模拟量输入通道,输入范围-10-10V电压信号和-10-20mA电流信号可选,主要完成现场模拟量的输入、采集与处理工作。LM3320模块有2路模拟量输出处理通道,输出范围0~10V电压信号或0~20mA电流信号,完成模拟量信号的输出工作。
表1为系统I/O分配表。
4.2 监控部分
上位监控部份采用和利时HT6600系列触摸屏,配以监控软件来完成。触摸屏上可以进行参数设置、电机启停控制和显示转速和故障等信息。图4-图7为触摸屏部分监控画面。
DI DO I1IX号电机正转Q1QX#变频正转I2IX0.11号电机反转Q2QX0.11#变频反转I3IX0.21号后联Q3QX0.22#变频正转I4IX0.32号前联Q4QX0.32#变频反转I5IX0.42号电机正转Q5QX0.43#变频正转I6IX0.52号电机反转Q6QX0.53#变频反转I7IX0.62号后联Q7QX0.64#变频正转I8IX0.73号前联Q8QX0.74#变频反转I9IX1.03号电机正转Q9QX1.05#变频正转I10IX1.13号电机反转Q10QX1.15#变频反转I11IX1.23号后联Q11QX1.26#变频正转I12IX1.34号前联Q12QX1.36#变频反转I13IX1.44号电机正转Q13QX1.4收线电机正转I14IX1.54号电机反转Q14QX1.51#电机刹车气阀I15IX1.64号后联Q15QX1.62#电机刹车气阀I16IX1.75号前联Q16QX1.73#电机刹车气阀I17IX2.05号电机正转Q17QX2.04#电机刹车气阀I18IX2.15号电机反转Q18QX2.15#电机刹车气阀I19IX2.25号后联Q19QX2.26#电机刹车气阀I20IX2.36号前联Q20QX2.37#电机刹车气阀I21IX2.46号电机正转Q21QX2.4故障指示灯I22IX2.56号电机反转Q22QX2.5故障复位继电器I23IX2.6断线报警Q23QX2.6急停输出(断线)I24IX2.7变频故障Q24QX2.7 I25IX4.01号停止AI I26IX4.11号启动(加速)I1IW6 I27IX4.22号停止I2IW81号张力控制器I28IX4.32号启动(加速)I3IW102号张力控制器I29IX4.43号停止I4IW123号张力控制器I30IX4.54号停止I5IW144号张力控制器I31IX4.64号启动(加速)I6IW165号张力控制器I32IX4.75号停止I7IW18 I33IX5.05号启动(加速)I8IW20 I34IX5.16号停止AO I35IX5.26号启动(加速)Q1QW4变频器1I36IX5.3自动启动Q2QW6变频器2I37IX5.4故障复位(控制复位继电器)Q3QW8变频器3I38IX5.53号启动(加速)Q4QW10变频器4I39IX5.6减速停车Q5QW12变频器5I40IX5.7 Q6QW14变频器6 Q7QW16 Q8QW18 表1 系统I/O分配表 |
5 结论
采用和利时可编程控制器、和利时的触摸屏以及变频器,为直线拉丝机设备提供了机电一体化的系统解决方案,可进行点动、联动和自动控制,tigao了拉丝机的自动化程度。同时,控制系统提供非常高的运算速度和控制精度,保证了拉丝的质量,具有很高的可靠性和性能价格比,在保证质量的同时,大化的降低生产成本。