西门子模块6ES7212-1AB23-0XB8供应现货
人机介面或称为人机互动(human-machine interface;)是一个涵盖多重科技的领域,包括人因工程、人体工学、科学、人工智慧、认知心理学、哲学、社会学、人类学、设计学与工程学等学门,因此不能完全以it科技的角度观察与研究,甚至其中认知心理学的重要性可能比电脑科学重要,但是目前研究人机介面的模式常反其道而行,造成许多有用的程式或是科技在「不好用」的呼声中被埋没,殊为可惜。
人机介面简单的定义是,在人员与机器之间,透过某种介面,人能够对机器下达指令,机器则能够透过此介面,将执行状况与系统状况回报给使用者,换言之,正确的在人机之间传达讯息以及指令,就是人机介面的主要定义。
图示:人机介面要考量人性需求,例如将複杂的各种门禁与管理讯号,浓缩到一个10吋萤幕成浅显易懂的资讯即是一例
人机介面设计出来,所需要达成的目标,却不仅仅是单一的命令与回馈,反而相当複杂,主要分为四个面向:1、发挥机器本身应有的功能。2、提高机器的使用效率与发挥效能。3、确保使用中之机器或系统在对使用者友善的情况下,能更经济与安全,延长使用週期。4、符合使用者的生理、心理需求,提高使用满意度。
仔细审查前述的定义与目标,可以发现两者之间充满著模糊地带,如果是一般的it科技,输入与输出即具有性,但是人机介面在使用者与机器之间,却没有标准反应模式。以重要的视觉而论,介面上机器呈现的讯号,让人正确的看到「那个讯号」,但是这个讯号的意义,观看者却需要靠他个人的经验、知识和周围的环境,来解释所看见的影像。
换言之,设计再精良的机器,如果没有考虑到使用者对象的需求,往往也被归类为失败的人机介面,例如将一台显示许多数学符号的工程计算机给刚学会基本运算的幼童使用,原本设计精良的功能反而成为干扰幼童找到正确数字的障碍,结果其计算速度还不如交给幼童一台阳春计算机。
此一浅显的道理放在前述的例子相当明显,但是当使用者背景与机器本身功能开始複杂化后,许多可笑的例子即出现,故人机介面的设计,很明显不能只从机器的功能面发想构思。
解构人机介面步 了解使用者:人
「了解人」是设计人机介面的个步骤,看似简单以懂,却知易行难,因为这个概念却违背很多正在设计人机介面的「科技人」的直觉,因为科技人从小到大接受的训练,都是人可以被且必须被训练来配合工作以及任务。实际上「训练有素」的概念在二次大战就证明漏洞百出,即使是经过特殊训练的人,还是无法操作一些複杂的机器或胜任一些看似已熟练的工作,因为这些机器或工作本身已经超出人类的能力极限。
二战例子之一,即1940年纳粹德军入侵法国,法国战车无论装甲与火力都远胜德军,但是交战却以惨败收场。经过检讨才发现法国战车(如somua s35)几乎把所有功能都设计给车长,以致于车长必须观察战场,研判战况,下命令给其他成员,注意敌军和友军的动静,还必须亲手装填抱弹、瞄准、发射。相对的,德军战车(如iii号战车)把这些任务分别分散在车长,炮手、装填手、无线电手的身上,各司其职,效率远远压过车长一人忙不过来的法国战车。
换成it术语,就是能多工的德军战车击败了只能单工的法国战车,当然原因即是法国战车人机介面设计不良,研发者忘了考量车长这个人,就算训练有素,也有其生理上与心理上的极限。从此,「了解人类极限而不是考验人类极限」的观念诞生,成为了二战后人机介面设计的基本守则。
了解作为使用者的人,基本上由生理结构与人体计测方法开始,首先为了解人体骨骼生理结构、活动方式与测量标准、测量方法等,接著为认识神经系统、骨骼与肌肉、运动控制、反应时间的测量与模型等,了解运动与体力活动在不同情境下的极限。
再者为人类感官能力,即视、听、触、嗅、味、本体觉、运动觉、平衡觉的生理运作特徵,其中视觉为重要,主要就是指视觉的认知能力,包括视距长短、视野大小、变色能力、明暗适应力、视觉暂留、阅读与感知速度…等的了解。次要的为听觉,亦需了解听觉系统的生理运作特徵,包括音响度、音高、音色的知觉现象等与语音介面的关系。
接著探究人类认知能力,了解「认知心理学」的研究理论与成果。包括记忆、注意力、思考、问题解决、知识表徵的议题与讯息处理论,这个部分看似艰涩,实际上认知心理学可说是大脑思考的逆向工程(reverse engineering):用以实验为主方法,尝试大脑之算法(algorithms)与资料结构(data structures)。认知心理学习惯用历程(processes)与表徵(representations)指涉演算法与资料结构。以it工程师学术训练而言,把名词代换即可看出两者的关联性。
除了一般人外,现在的人机介面越来越讲求针对特殊使用者,例如孕妇、儿童、老人、残障者的问题与设计考量。此外,有些法令规范会进一步限制人体所能承受的物理化学限制,例如车辆的撞击规范,都需要一併了解。
导入人性的人机介面设计 5方法破闭门造车困境
在实务上,有许多方法可以突破人机介面设计闭门造车的窘境,让设计出来的介面符合前述的以人为本之概念。不过单一方法因各有优缺点,故通常必须以3个以上的方式交叉评估。
1、启发式评估(heuristic bbbbuation):
启发式评估可以让研发团队简单快速地在产品的人机介面中找出使用性问题。在启发式评估的过程中,评估人员对照研究人员提供的使用性准则清单,以检视产品的人机介面形式与操作流程,并找出其中违反使用性准则的项目。优点为可发现个别的使用性问题,可以列出专家使用者的需求,缺点是因为并未包括真正的使用者来思考,所以无法发现令专家意想不到的需求。
2、观察法(observation):
适用于操作分析及追根究底的研究阶段,通常需要3 位或更多的使用者,优点是具有生态学之效力且可明确的指示使用者的工作,缺点是如果没有实验者在掌控,则结果将难以控制。
3、访谈(interviews)与问卷调查(questionnaires)法:
访谈适用于操作分析阶段,一般需要5 位受测者,优点为这是一种柔性的、深入的看法与经验调查,缺点是需花费相当长的时间且结果非常难分析比较。问卷适用于操作分析及事后检讨的研究,少要有30 位受测者,优点为可发现受测者的主观偏好,且容易反覆进行,缺点是为了避免误解,需要先前测试工作。
4、记录实际使用法(logging actual use):
需20位以上受测者,记录完整使用结果,以链结分析(bbbb analysis)、佈局分析 (layout analysis)、工作层级分析(hierarchical task analysis)等方式,优点为可发现高的惯用性或不惯用的型态,缺点为分析内容需大量资料,也许侵犯到使用者的隐私。
5、使用者直接回馈法(user feedback):
需要上百受测者长时间的参与,适用于事后检讨的研究,优点为可持续追踪使用者的要求与观点是否改变,缺点是需要特定组织固定性的执行发问与回收资料等工作。
开发具有的移动手持设备是一项复杂的设计挑战,尤其是对于投射式触摸屏设计来说更是如此,它代表了当前多点触摸界面的主流技术。投射式 电容触摸屏能够jingque定位手指轻触屏幕的位置,它通过测量电容的微小变化来判别手指位置。在此类触摸屏应用中,需要考虑的一个关键设计问题是电磁干扰 (emi)对系统性能的影响。干扰引起的性能下降可能对触摸屏设计产生不利影响,本文将对这些干扰源进行探讨和分析。
投射式电容触摸屏结构
典型的投射式电容安装在玻璃或塑料盖板下方。图1所示为双层式传感器的简化边视图。发射(tx)和接收(rx)电极连接到透明的氧化铟锡 (ito),形成交叉矩阵,每个tx-rx结点都有一个特征电容。tx ito位于rx ito下方,由一层聚合物薄膜或光学胶(oca)隔开。如图所示,tx电极的方向从左至右,rx电极的方向从纸外指向纸内。
图1:传感器结构参考。
传感器工作原理
让我们暂不考虑干扰因素,来对触摸屏的工作进行分析:操作人员的手指标称处在地电势。rx通过触摸屏控制器电路被保持在地电势,而tx电压则可变。变化的 tx电压使电流通过tx-rx电容。一个仔细平衡过的rx,隔离并测量进入rx的电荷,测量到的电荷代表连接tx和rx的“互电容”。
传感器状态:未触摸
图2显示了未触摸状态下的磁力线示意图。在没有手指触碰的情况下,tx-rx磁力线占据了盖板内相当大的空间。边缘磁力线投射到电极结构之外,因此,术语“投射式电容”由之而来。
图2:未触摸状态下的磁力线。
传感器状态:触摸
当手指触摸盖板时,tx与手指之间形成磁力线,这些磁力线取代了大量的tx-rx边缘磁场,如图3所示。通过这种方式,手指触摸减少了tx-rx互电容。 电荷测量电路识别出变化的电容(△c),从而检测到tx-rx结点上方的手指。通过对tx-rx矩阵的所有交叉点进行△c测量,便可得到整个面板的触摸分 布图。
图3还显示出另外一个重要影响:手指和rx电极之间的电容耦合。通过这条路径,电干扰可能会耦合到rx。某些程度的手指-rx耦合是不可避免的。
图3:触摸状态下的磁力线。
专用术语
投射式电容触摸屏的干扰通过不易察觉的寄生路径耦合产生。术语“地”通常既可用于指直流电路的参考节点,又可用于指低阻抗连接到大地:二者并非相同术语。 实际上,对于便携式触摸屏设备来说,这种差别正是引起触摸耦合干扰的根本原因。为了澄清和避免混淆,我们使用以下术语来评估触摸屏干扰。
earth(地):与大地相连,例如,通过3孔交流插座的地线连接到大地。
distributed earth(分布式地):物体到大地的电容连接。
dc ground(直流地):便携式设备的直流参考节点。
dc power(直流电源):便携式设备的电池电压。或者与便携式设备连接的充电器输出电压,例如usb接口充电器中的5v vbus。
dc vcc(直流vcc电源):为便携式设备器件(包括lcd和触摸屏控制器)供电的稳定电压。
neutral(零线):交流电源回路(标称处在地电势)。
hot(火线):交流电源电压,相对零线施加电能。
lcd vcom耦合到触摸屏接收线路
便携式设备触摸屏可以直接安装到lcd显示屏上。在典型的lcd架构中,液晶材料由透明的上下电极提供偏置。下方的多个电极决定了显示屏的多个单像素;上 方的公共电极则是覆盖显示屏整个可视前端的连续平面,它偏置在电压vcom。在典型的低压便携式设备(例如手机)中,交流vcom电压为在直流地和 3.3v之间来回震荡的方波。交流vcom电平通常每个显示行切换一次,因此,所产生的交流vcom频率为显示帧刷新率与行数乘积的1/2。一个典型的便 携式设备的交流vcom频率可能为15khz。图4为lcd vcom电压耦合到触摸屏的示意图。
图4:lcd vcom干扰耦合模型。
双层触摸屏由布满tx阵列和rx阵列的分离ito层组成,中间用电介质层隔开。tx线占据tx阵列间距的整个宽度,线与线之间仅以制造所需的小间距隔 开。这种架构被称为自屏蔽式,因为tx阵列将rx阵列与lcd vcom屏蔽开。然而,通过tx带间空隙,耦合仍然可能发生。
为降低架构成本并获得更好的透明度,单层触摸屏将tx和rx阵列安装在单个ito层上,并通过单独的桥依次跨接各个阵列。因此,tx阵列不能在lcd vcom平面和传感器rx电极之间形成屏蔽层。这有可能发生严重的vcom干扰耦合情况。
充电器干扰
触摸屏干扰的另一个潜在来源是电源供电手机充电器的。干扰通过手指耦合到触摸屏上,如图5所示。小型手机充电器通常有交流电源火线和零线输入,但 没有地线连接。充电器是安全隔离的,所以在电源输入和充电器次级线圈之间没有直流连接。然而,这仍然会通过开关电源隔离变压器产生电容耦合。充电器干扰通 过手指触摸屏幕而形成返回路径。
图5:充电器干扰耦合模型。
注意:在这种情况下,充电器干扰是指设备相对于地的外加电压。这种干扰可能会因其在直流电源和直流地上等值,而被描述成“共模”干扰。在充电器输出的直流 电源和直流地之间产生的电源开关噪声,如果没有被充分滤除,则可能会影响触摸屏的正常运行。这种电源抑制比(psrr)问题是另外一个问题,本文不做讨论。
充电器耦合阻抗
充电器开关干扰通过变压器初级-次级绕组漏电容(大约20pf)耦合产生。这种容耦合作用可以被出现在充电器线缆和受电设备本身相对分布式地的寄生并 联电容补偿。拿起设备时,并联电容将增加,这通常足以消除充电器开关干扰,避免干扰影响触摸操作。当便携式设备连接到充电器并放在桌面上,并且操作人员的 手指仅与触摸屏接触时,将会出现充电器产生的一种坏情况的干扰。
充电器开关干扰分量
典型的手机充电器采用反激式(flyback)电路拓扑。这种充电器产生的干扰波形比较复杂,并且随充电器不同而差异很大,它取决于电路细节和输出电压控制策略。干扰振幅的变化也很大,这取决于制造商在开关变压器屏蔽上投入的设计努力和单位成本。典型参数包括:
波形:包括复杂的脉宽调制方波和lc振铃波形。频率:额定负载下40~150khz,负载很轻时,脉冲频率或跳周期操作下降到2khz以下。电压:可达电源峰值电压的一半=vrms/√2。
充电器电源干扰分量
在充电器前端,交流电源电压整流生成充电器高电压轨。这样,充电器的开关电压分量叠加在一个电源电压一半的正弦波上。与开关干扰相似,此电源电压也是通过 开关隔离变压器形成耦合。在50hz或60hz时,该分量的频率远低于开关频率,因此,其有效的耦合阻抗相应更高。电源电压干扰的严重程度取决于对地并联 阻抗的特性,同时还取决于触摸屏控制器对低频的灵敏度。
图6:充电器波形实例。
电源干扰的特殊情况:不带接地的3孔插头
额定功率较高的电源适配器(例如笔记本交流适配器),可能会配置3孔交流电源插头。为了抑制输出端emi,充电器可能在内部把主电源的地引脚连接到输 出的直流地。此类充电器通常在火线和零线与地之间连接y电容,从而抑制来自电源线上的传导emi。假设有意使地连接存在,这类适配器不会对供电pc和 usb连接的便携式触摸屏设备造成干扰。图5中的虚线框说明了这种配置。
对于pc和其usb连接的便携式触摸屏设备来说,如果具有3孔电源输入的pc充电器插入了没有地连接的电源插座,充电器干扰的一种特殊情况将会产生。y电 容将交流电源耦合到直流地输出。相对较大的y电容值能够非常有效地耦合电源电压,这使得较大的电源频率电压通过触摸屏上的手指以相对较低的阻抗进行耦合。
本文小结
当今广泛用于便携式设备的投射式电容触摸屏很容易受到电磁干扰,来自内部或外部的干扰电压会通过电容耦合到触摸屏设备。这些干扰电压会引起触摸屏内的电荷 运动,这可能会对手指触摸屏幕时的电荷运动测量造成混淆。因此,触摸屏系统的有效设计和优化取决于对干扰耦合路径的认识,以及对其尽可能地消减或是补偿。
干扰耦合路径涉及到寄生效应,例如:变压器绕组电容和手指-设备电容。对这些影响进行适当的建模,可以充分认识到干扰的来源和大小。
对于许多便携式设备来说,电池充电器构成触摸屏主要的干扰来源。当操作人员手指接触触摸屏时,所产生的电容使得充电器干扰耦合电路得以关闭。充电器内部屏蔽设计的质量和是否有适当的充电器接地设计,是影响充电器干扰耦合的关键因素。