浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6GK7243-1EX01-0XE0大量库存

西门子模块6GK7243-1EX01-0XE0大量库存

1 引言

  可编手里逻辑控制器PLC进入国内工业控制领域己近十年了,早期的PLC由于受硬件的构成及软件环境的局限,其应用范围受到二定的限制。近几年来,随着微电子技术及计算机技术的高速发展,PLC产品高度融合了计算机产业新进的技术与工业自动控制的经典理论,在其功能及性能上指标上得以大大的丰富和完善,从而突破了传统PLC的概念,在中、小型控制领域内极大的扩展了其应用范围。在特定的范围内,高性能价格比己成为新型PLC的突出的特点。
  A-B公司是国际的工业产品制造厂商,其工业自动化控制产品以其高性能、高可靠性在工业控制领域有着其特定的地位。A-B公司的PLC产品更是该产品领域的佼佼者。本文将通过介绍A-B公司的新型PLC产品在南方某3X125MW机组电厂辅助装置中的实际应用实例,来介绍新型PLC产品的先进功能与性能。

  2 产品简介

  美国A-B公司的新型的SLC500/03 PLC系统,是PLC产品领域中较先进的机型之二,除具有常规PLC产品的基本性能外,它还具有以下的独特功能:
  *强大的输入/输出信号支持能力,I/O接口部分支持960离散点;
  *丰富简单的集成化指令,处理器指令集71条,简单易学便于系统的应用及推广;
  *多级工作状态指示显示,便于现场运行人员对系统的工作状态一目了然;
  *高可靠性的性能设计,确保正常工作条件下,系统的维护量小。

  3 工艺流程
  
  作为电厂工艺流程中二个重要的环节,化学水处理部分在整个电厂的自动控制系统中有着举足轻重的地位。它的工作状态将直接影响整个锅炉系统的安全性与经济性,并影响到整个电厂的工作稳定性与可靠性。化学水电气控制部分的各种控制阀门和联锁开关较多,其中任一环节的工作状态的稳定性和可靠性都将对整个化学水自动控制部分产生相送连的影响。
  针对这样的实际状况,我们在化学水的控制部分采用了由PLC系统构成的程序控制,选用了A-B公司高性能的PLC产品SLC-500/03,从而完成化学水处理部分的启动、停止、暂停、再启动以及相关电磁阀箱、风机、泵的控制。化学水部分的运行(送水)和再生指令全部自动进行。当某种水处理设备失效后,由检测仪表发出信号,把该设备从制水系统中解列,经过判断,确认具备再生条件时,自动投入再生。再生程序完毕,水质合格后自动把该设备并入到制水系统,恢复送水。
  选用PLC系统构成了以下几个分系统:
  *机械过滤器的程序控制系统
  *一般除盐系统的程序控制系统
  *混合离子交换器的程序控制系统
  下面以化学水处理部分一般除盐系统的程序控制为例,介绍其工艺及系统构成。
  对于电厂的化学水处理部分,除盐系统为系统中重要的一个环节,供往锅炉的水中含有微量的悬浮物、胶体物质和有机物质,它们的存在会直接影响锅炉的使用寿命和传输管道的安全,所以必须作前期的处理。
  它的处理过程为在化学水处理的过程中,加入特定的化学物质,从而与水中的有害成分发生化学反应,通过沉淀、过滤等方式将这些特质从水中分离出来。PLC系统主要自动控制并完成整个除盐过程的中的阀门的启、停及相关管路中的开、闭等。并联运行固定床两极除盐系统工艺示意图如图1所示:




 4 实际应用

  根据上述的化学水一般除盐过程的工艺流程,选用相对应的PLC构成程序控制系统。除盐过程所涉及的开关量信号计有除盐水导电度、阳床钠离子、阳床NaOH等相关的输入、输出点,故选用了SLC500/03中的离散量输入模块1746-IB32计三块,离散量输出模块1746-IB32计二块,继电器输出模块1746-0X08计八块,构成的整个PLC自动控制系统如图2所示。
  按照上述的程序流程图,通过PLC系统专用的程序软件包进行系统程序的生成,并投入正常的使用。(程序部分较长,略)



  5 使用效果及经济效益

  按照常规电厂输助设备控制系统的设计,化学水处理自动控制部分常常采用传统的按钮及继电器组组成。这样构成的系统,早期投入的费用相对较低,但由于所使用的元、器件和设备较多,相互之间的连接线及关系也较繁琐,无法从每二个环节上确定保证每一个独立部分性能的良好发挥和其可靠性,因而从长远运行的角度考虑,后期设备的维护上所发生的费用将远远超过选用PLC构成系统所发生的费用,这里还不包括由于这部分工作的不可靠因素从而造成对整个电厂的正常生产所带来的影响。我们在南方某电厂3*125MW机组化学水处理部分设计中采用了PLC系统构成,由于该产品的优良特性,不仅在极短的工期时间内完成了该程序控制部分的安装与系统调试,而且由于产品的高可靠性,从而使该辅助系统投入运行一年多来,基本处于免维护工作状态,保证了整个运行机组的安全、可靠、稳定的运转,受到业主等多方面的好评。
  对于中、小型的控制系统,在条件允许的情况下,我们推荐选用新一代的PLC产品

一. 概述
  随着现代工业的发展,对于产品制造加工所要求的精度越来越高,特别是在电子工业中,所要求生产加工的精度要求很高,在现代日常生活中,许多日用电子产品的更新换代特别快,所用的研制开发、生产周期特别短,而在此环节中,生产环节就显得尤为重要,所以就对生产设备的要求也就越来越高,生产设备要能够适应多种不同产品的生产,特别是新产品的生产适应能力,还要能够保证产品的精度。在TFT生产中,在基板完成电路印刷等一系列的工作以后有一道工序,就是基板的切割,因为在前道生产根据设备和工艺的要求是一块比较大的基板,在一块大的基板上可能有好多块小的基板组成,这根据制造面板本身的用途来定。如手机面板,目前在生产的一块大的基板上有30到104块不等的小的基板组成,这还要根据手机面板的尺寸来定,如图1所示。经过切割以后,变成一片一片小的基板,如图2所示。从图2可以看出,基板由两层玻璃组合而成,在两层之间有印刷电路,而且在切割的时候上下不是在一条线上,而是成一个阶梯状,在TFT面的A处有印刷电路端子,切断过程中不能碰伤端子。在如图3中所示,A-F中5个尺寸精度要全部达到±0.1mm,并且切断后在基板的边缘不能有毛边,这样就要在切断过程中要很好的控制压力、切入量,根据不同玻璃材质就要设定不同的压力和切入量,另外切断的步骤也是比较重要的,一般都采用的步骤是:①CF面 切②TFT面 剖③TFT面 切④C F面 剖。在现在划线设备中都是采用的多把刀(以前都是单刀作业),一般在5-7把刀,此系统中采用了5把刀,在此系统中刀的切入量和左右运动都采用伺服系统来控制,而且都采用了高速运动,这样能够大大提高工作的效率。






二. 系统组成与工作原理
2.1  系统的硬件组成




图3是本系统整个控制系统的原理图,本系统采用Q06H CPU为控制单元,QD75D4和QD75D2为伺服系统的定位单元,还采用了两个QJ74C24通讯模块单元,其中一个与人机界面(A970GOT)连接,另外一个和画像处理系统连接,画像系统主要用于Mark点(也就是标记点)的识别,然后产生一个偏差的补正值。另外与QJ74C24相连接的PC1机是系统机械参数、工作参数设定以及切断程序编制的专用机。PC1与PLC之间的通讯使用的是专门的通讯程序软件。本系统的工作方式是采用偏差补正的方式。对于一个新的品种,首先要进行Mark点的识别,登录,MARK点的形状可以随意,但一般采用的是’十’字为Mark点标记,如图4所示,就是画像处理系统对Mark点的认识过程,认识后产生一个偏差补正量,根据偏差量计算出基准位置。




2.2  软件设计


本系统采用的是A970GOT人机界面,在本系统中人机界面起了非常重要的角色,是其他任何器件都代替不了的。人机界面总共有218个画面组成,主要分两大部分:一是正常的操作人员操作的主画面,二是设备维修、调试人员进入的特殊功能画面,此画面只有工程师级身份人员才能进入,它的参数直接影响设备的正常工作,图6为特殊功能画面的结构图,其中主要是参数设定方面,这里主要介绍轴的位置参数设定,在本系统中主要的部分就是伺服系统,它是保证系统精度的核心,伺服系统的参数、数据设定是非常复杂的,图6为伺服系统参数设定的基本框架结构图,基本参数主要是单位设定、1脉冲的相当移动量、脉冲输出模式、转动方向、速度限制值、加减速时间、马达选择。详细设定除了对上面叙述中一些进行了详细设定以外,还对其他的功能进行了设定,如M代码的取码模式、速度模式、JOG运转、手动脉冲的选择、圆弧误差补正等等。原点复位参数设定主要是复归的方式、方向、原点地址、速度。定位用数据就是我们所要求系统如何去工作、工作的步骤、数据等内容。伺服系统的工作主要是对内部寄存器的地址进行操作,主要分为参数区、监视区、制御数据区、定位数据区、PLC的CPU内存区、块传送区几个部分。在图5系统图中对各个位置的设定(QD75)主要是对基本定位数据的设定,包括定位识别子、M代码、指令速度、定位地址/移动量、突停减速时间、圆弧地址,其中每轴共设定了30点位置,这样可以有效的适应系统切割复杂程度不同的基板。在人机界面的软件设计中,把与伺服系统相关的定位数据参数直接编写在画面中,可以有效的对系统进行调整,改变,在系统中不仅仅上面的这些数据,另外与定位有关的参数设定还有很多,在这里就不一一列举,本系统是一个非常复杂的系统。
    



2.3   系统的工作原理



系统在机械参数设定好后,首先根据基板的划线数据进行编程,确定划线的数据、MARK点的数据、使用刀的数量、每把刀划每条线的压力、划线的次数等, 以上参数有专门的软件进行编辑。编辑完成后再通过PC1输入PLC 的CPU,在完成数据的编辑后,软件回自动生成切割的模拟画面,确定基板划线的每一步由哪几把刀去做,在完成这一系列的工作后,就要放入基板试作划线,根据系统设定,在放入基板后按下启动按钮,基板平台会自动把基板送到影像处理系统的CCD的下面,在监视器上面看到的就如图4所示,在MARK识别中与系统设定会有一个的偏差,根据这个偏差系统进行补正,现介绍一下补正过程,如图7, 以把刀为例,刀1原点与CCD原点的X向距离D1在系统中设定为一定值,刀1与刀1原点的距离D2为在编制程序是产生,也为一定值,CCD原点与现在CCD之间的距离D3,在编制程序时有一个MARK的坐标值,D3即为基板的X向MARK坐标,D4为MARK点与刀1划基板道线X向距离,在理想状态下为一定值。即可以得出D1+D2=D3+D4,其中D1、D2为固定值,假设D5为CCD识别MARK点的动态坐标,偏差补正为△d,可以得出D5=D3±△d,如在理想状态,CCD识别MARK点的X向坐标刚好为D3,即D5=D3,而每块基板在放置的时候位置会不一样,所以都会有一个偏差△d,根据△d每次在CCD识别MARK点后向刀1移动的距离为D4±△d,这就是偏差补正的过程,其他的刀原理也是这样,在偏转划线时也是根据CCD次MARK识别的坐标了确定的。在划完了TFT面后,在 CF面对TFT面进行剖断,然后在CF面划线,再在TFT面对CF进行剖断,这样就完成了对基板的划线。
    
三. 技术性能和特点
  1. 系统采用了与人机界面相结合,使得系统的布线简单、简洁。
  2. 采用了QD75系列的伺服系统定位单元,系统的度精能够达到0.01um。
  3. 伺服系统的输出系统具有集电极开路输出和差分输出两种工作方式,在应用时可以根据需要进行选择。
  4. 系统的定位范围比较宽,单位可以用um、英寸、度设定。控制系统也比较多样化,能够实现PTP控制、跟踪控制、速度控制、速度-位置控制、位置-速度控制,根据系统的需要可以选择不同的控制系统,另外,还具有圆弧插补功能。
  5. 系统响应的时间比较短,因而减少了不同步产生的机会。
  6. 系统采用了影像处理系统,这样就提高了系统的精度,对于一些要求不高的场合,系统在工作时影像系统可以选择不使用,但这样可以减少时间,增加工作的效率。
  7. 本系统采用了多刀工作方式 ,这样大大的提高了工作的效率,但同时增加了系统在设计时的复杂性,
  8. 另外,QD75系列的伺服定位单元具有预读起始功能,这样可以减少定位起始的时间,可以保证快速多种应用的定位。对于QD75系列的定位单元还专门设计了设置/监控软件——QP(GX-Configurator)这样便于定位参数的设定,定位数据的生成和监控。

四. 结束语
  本系统是一个比较复杂的系统,在定位方面要求比较高,它的主要工作部件就是伺服系统,对于伺服系统与PLC的编程是比较复杂的,而系统完成后,对于操作人员来说操作是非常简单的


展开全文
优质商家推荐 拨打电话