浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7223-1BL22-0XA8货期较快

西门子模块6ES7223-1BL22-0XA8货期较快

一、系统概述

    艾默生PLC和变频器在浆纱机上的应用,此电气系统采用PLC集中管理,分散控制,系统集中化,简约化,易控性强,更好的降低故障率。 方案配置如下:

    PLC系统由艾默生EC202416BAR主模块,16点的数字量输入模块和4路模拟量输出模块组成。

    操作界面采用工业级液晶触摸屏,可动态修改控制参数,方便显示当前速度,当前匹长、匹数及系统的动态运行状态。

    边轴电机变频器采用高性能通用型的EV2000系列,织轴收卷TD3300 22KW张力变频器。此变频器是张力专用变频器,内置张力控制功能。采用独立变频模式,结构简单,维护方便,稳定度高,保证收卷的张力及线速度,在小卷到大卷的变化过程中稳定可靠。在加减速中的自动补偿控制,使加减速中张力更稳,更有上卷防断纱程序,使上卷起机时便于操作。

本系统的优点:

Ø      张力设定在人机上设定,人性化的操作;

Ø      使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等;

Ø      卷径的实时计算,jingque度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值;

Ø      因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好;                   

PLC资料网


       在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期短,基本上两三天就能安装调试完成;

Ø      克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

Ø      机台上的所有操作部分全部采用36V以下的安全电,以保证操作中的使用安全。

二、系统框图

三、张力控制原理

    所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转矩。真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到像真正的张力控制的效果,张力不是很稳定。肯定会影响产品的质量。

    变频收卷的实质是要完成张力控制,即能控制电机的运行电流,因为三相异步电机的输出转矩T=CmφmIa,与电流成正比。并且当负载有突变时能够保证电机的机械特性曲线比较硬。所以必须用矢量变频器,而且必须要加编码器闭环控制。用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。

Ø      卷径的计算原理

根据V1=V2来计算收卷的卷径。因为V1=ω1×R1,               V2=ω2×Rx。因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即L1/Δt=L2/Δt,Δn1×C1=Δn2×C2/i

(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比)                         

Δn1×π×D1=Δn2×π×D2/i   

D2=Δn1×D1×i/Δn2,因为Δn2=ΔP2/P2

(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的圈数)。Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由编码器接到PLC。那么D2=D1×i×P2/ΔP2,这样收卷盘头的卷径就得到了

Ø      收卷的动态过程分析                          

    要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定。需要进行转矩的补偿。整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系。在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴。这样就分析出了收卷整个过程的转矩补偿的过程。

总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩。

Ø      转矩的补偿标准

1)    静摩擦转矩的补偿

    因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了。因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿。

2)    滑动摩擦转矩的补偿

    滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的。补偿的大小以收卷电机的额定转矩为标准。补偿量的大小与运行的速度有关系。所以在程序中处理时,要分段进行补偿。

3)    加减速、停车转矩的补偿

    补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。    

相关的计算公式 PLC

 PLC资料网


四、调试过程

(1)先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。

(2)将编码器的信号接至变频器,并在变频器上设定编码器的圈数。然后用面板给定频率和启停控制,观察显示的运行频率是否在设定频率的左右波动。因为运用闭环矢量控制时,运行频率总是接近设定频率,所以运行频率是在设定频率的附近波动的。

(3)在程序中设定空芯卷径和大卷径的数值。通过前面卷径计算的公式算出电机尾部所加编码器产生的大脉冲量(P2)和低脉冲量(P2)。通过算出的大脉冲量对收卷电机的速度进行限定,因为变频器用作张力控制时,如果不对高速进行限定,一旦出现断纱等情况,收卷电机会飞车的。低脉冲量是为了避免收卷变频器运行在2Hz以下,因为变频器在2Hz以下运行时,电机的转矩特性很差,会出现抖动的现象。

(4)通过前面分析的整个收卷的动态过程,在不同卷径和不同运行速度的各个阶段,进行一定的转矩补偿。补偿的大小,以电机额定转距的百分比来设定。

五、参数简表

附表1:TD3300功能参数简表


F0组:基本功能


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


F0.02

控制方式




1


F0.05

运行命令选择




1

×


F0.07

大输出频率




100

×


F0.08

上限频率




100

×


F0.10

加速时间




10


F0.11

减速时间




10



F1组:电机参数


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


F1.00

机械传动比




13.32



F1.01

电机额定功率




18.5



F1.02

电机额定电压




380



F1.03

电机额定电流




35.9



F1.04

电机额定频率




50



F1.05

电机额定转速




1470



F1.06

电机过载保护方式




2



F1.07

电机过载保护系数




110


F2组:辅助参数


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


F2.06

频率限定选择




1




F3组:矢量控制


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


F3.06

张力控制选择




3



PLC资料网


F5组:开关量端子


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


F5.03

张力方向切换端子




24

































 

F8组:张力控制功能1

功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改

F8.00

卷取模式




0


F8.01

张力设定选择




3


F8.03

大张力




4000


F8.05

零速张力




1400


F8.08

卷径来源选择




3


F8.09

大卷径




1000


F8.11

初始卷径选择




2


F8.17

张力方向选择




0



FB:编码器功能


功能码

名称

LCD画面显示

设定范围

小单位

设定值

更改


FB.01

编码器线数




600



FB.02

PG方向




0


结束语:技术更新越来越快,我们必须tigao产品性能,使我们的产品能够适应我们的工艺要求

对象:
① 三菱PLC: FX2N(V3.0以上版本) + FX2N-485-BD + FX2N-ROM-E1
② 三菱变频器: A500系列、E500系列、F500系列、F700系列、S500系列
FX2N-ROM-E1是一种功能扩展存储器,首先它是16K步的EEPROM存储器,同时当其用在FX2N系列V3.0或以上版本的PLC(对应的序列号为15**** 或以后)上时,还可以使用扩展的EXTR(FNC.180)指令与三菱的变频器(多8台)很方便地进行485通讯(当然还需要有FX2N-485-BD通讯扩展板)。
当使用软件输入EXTR指令时,GX Developer需要SW7或者以上版本,FX-PCS/WIN则需要3.10或者以上版本。
㈠ 对PLC的D8120(通讯格式)设置如下:
0000   1100   1000    0110
0     C     8     6
对应的含义是:波特率9600bps,7位数据位,1位停止位,偶校验。
㈡ 对变频器中的相关通讯参数设定如下:





㈢ 关于EXTR(FNC.180)指令的说明:
EXTR K10: 变频器监视
EXTR K11: 变频器运行控制
EXTR K12: 读取变频器参数
EXTR K13: 变频器参数写入

具体的梯形图程序如下:




当M1为ON时,马达正转。
当M2为ON时,马达反转。
D50中是当前变频器的运行频率。D51中是电流监视值。D52中是电压监视值。

1、概述
水轮机筒阀由法国NEYRPIC公司于1962年用于真机以来,通过一些中小水轮机的应用实践,逐步得到了完善。到1979年加拿大当时大的水电站LG-2,16台出力为338.5MW的大型混流式水轮机采用了圆筒阀之后,它的应用开始引起各国的注意,许多优点得到公认。因此,被越来越多的水电站采用。它的主要优点有:1、安装在固定导水叶与活动导水叶之间,同安装在蜗壳前的球阀、蝶阀相比,缩短了整个厂房的纵向长度,降低了工程造价;2、密封性更好,能有效抑制了导叶漏水对导叶的磨损。3、开启、关闭时间短,能更好地适应电力系统对水电厂快速开机的要求并能有效地防止事故情况下的机组过速。4、能消除机前阀门进出口处的收缩和扩散段伸缩节的附加水力损失。5、圆筒阀启闭为直线运动,关闭时可根据水压上升率调整关闭速度。而在圆筒阀的应用实践中如何保证多只接力器的同步成为筒阀控制的关键技术问题。下面就这一问题阐述应用PLC技术实现同步的原理和方法。
2、筒阀的结构及同步机构原理
传统的解决同步问题的主要方法采用接力器驱动链条同步,在筒阀圆周尽可能多地均匀布置多支液压接力器,每支接力器动杆(活塞)下端连接固定在阀体上,活塞上下运动可以驱动阀门启闭。各活塞的同步移动有由可逆传动的滚动螺旋副实现,它是在活塞上固定的一只滚动螺旋传动的螺母,螺母连接传动丝杆,当活塞上下移动时丝杆做正反旋转,丝杆上端连接齿轮将筒阀的垂直运动变为齿轮的旋转,齿轮带动链条一起连动其它接力器的齿轮同速旋转并反作用于其丝杆而实现多只接力器的同步。此同步方案的缺点在于:1)、直径大的筒阀将布置数量较多的接力器,增加整个系统的投资。2)、接力器油缸进油口无调节能力,均由调定的节流阀控制liuliang,接力器运行速度的调节控制没有按调节规律运动的随动性。3)、链条同步对发生异步的的油缸矫正能力差,易发生链条张力矩过载甚至拉断,导致筒阀启闭失败。4)、由于油缸进油量由节流阀调整固定,筒阀只能定速启闭,丧失了筒阀直线运动可按程序指定启闭速度进行启闭的优势。
3、采用PLC输出控制比例阀液压随动系统实现同步
此方案采用接力器直接驱动筒阀并控制其同步,滚动螺旋副和链传动的同步机构可以取消或作为辅助同步手段和保护措施。另外,接力器本身不需再设缓冲装置,缓冲功能由PLC控制程序实现。采用本方案与传统的同步控制系统相比有如下特点:1)、可以灵活地改变(修改控制程序)阀门关闭开启的运动规律,使之更符合机组运行之需要。例如:当事故紧急停机调速器主配拒动而需快速关闭筒阀是时,为了即快速又不致使蜗壳及压力钢管水压上升率过高可采用分段关闭的控制规律。2)、可以取消机械同步机构,大大简化控制操作机构从而精简筒阀的整体结构,节省机坑内空间,改善运行维护条件。3)、减少操作执行组件数量,降低工程造价。4)、利用计算机通讯技术,为实现计算机远方监控提供坚实的现场控制和数据采集单元。




3.1控制系统基本原理
该系统主要由硬件和控制软件两部分组成,其中硬件部分包含可编程控制器(本方案PLC选用三菱公司的FX2N-80MT)及其配套的A/D模块、通讯模块、接力器行程测量组件(选用磁感应高精度、高速脉冲输出)、信号功率放大板、液压比例阀、电源、操作开关、按钮以及信号灯等组成;其系统硬件构成如图一所示。软件由三菱公司配套可在bbbbbbS下编程的FXGP-WIN-C开发而得。系统的基本控制策略如下:整个系统可视为以位移量偏差为负反馈的闭环电液随动系统,在多只接力器不同步的情况下,以其中一只为基准,在给定的启、闭规律基础上按经典PI控制算法,产生控制量作用到液压比例阀上,液压比例阀控制油liuliang大小校正发生的不同步的偏差以保证各油缸的同步运行,其基本控制原理框图如图二所示。




3.2各部分工作元器件特性
3.2.1控制运算部件PLC及其各功能模块
PLC(FX2N-80MT)是整个系统的核心控制部件,其丰富齐备的控制运算指令、优越的性能、现场编程调试的方便已成为实现各种控制的现场级设备。其主要性能指标有:运算速度: 0.08uS/步(基本指令), 1.52uS—数100uS(应用指令);用户程序内存容量:16K,系统程序内存容量:8K;应用指令:128种 298个;输入口:5组每组8个,其中高速记数口8个(X000—X007);响应速度:8个点合计小于等于20KHZ,自带电源容量:24V600mA;输入电源:AC/DC170V—250V。各功能模块:1)模数转换模块FX2N-4AD:用于接收压力传感器输出的4-20mA电流信号,将其变为PLC程序可用的0-1000的十进制数。其性能指标如下:功耗:DC5V30mA,模拟量输入范围:电压DC-10V--+10V大-15V--+15V(输入阻抗200K),电流DC-20mA--+20mA大-32mA—+32mA(输入阻抗250),;输出数字范围:-2047--+2047;分辨率:电压5mV,电流20uA;线性度:±1%F.S,采样速度:普通通道15mS,高速通道:6mS;3)数模转换模块FX2N-2DA:将PLC运算得到的控制量数值转化为电压信号输入到比例阀放大板控制液压比例阀。其性能指标如下:DC5V30mA,数值输入范围:-2047— +2047;模拟量电压输出: -10V— +10V,线性度:±1%F.S,分辨率:电压5mV(10V×1/2000),转化速度:普通通道18mS,高速通道:3.5mS;
3.2.2测量部件:位移传感器
选用美国MTS Temposonics III(PB/PH)非接触式位移传感器
原理:由询问信号的电流脉冲所产生的磁场(沿波导管运行)与位置磁铁产生的磁场相交产生一个应变脉冲信号,然后计算这个信号被探测所需的时间周期,便能换算出准确的位置。
性能及指标:分辨率:2um;响应速度:比其他测量方式:快4到20倍;提供网络数字输出SSI  CANBUS  PROFIBUS  DEVICENET ;符合欧洲CE规格
3.2.3执行部件:比例阀(包括放大板)
此环节是电气控制信号与机械液压系统连接的关键部分,直接影响到控制系统性能的发挥,所以选用德国REXROTH的VT5005带阀芯位置反馈的自动式比例方向控制阀,其放大电路技术数据如下:电源电压DC24V,功率50VA,控制电压±9V,大输出电流:2.2A。
3.2.4操作显示终端
本系统选用三菱的GOT940触摸操作显示终端,其画面可通过配套的GT-DESIGE软件制作并通过专用通讯电缆AC30R-9SS与PC机连接进行数据传送及调试。安装此显示终端可丰富人机界面,同时监视多个参数,对即时分析筒阀开启、关闭的运行状态提供方便。
3.3、控制策略
利用三菱PLC丰富的指令编制控制程序,对于现场调试及不断完善、优化控制程序具有重大意义。整个控制程序的流程框图如图三所示。
3.3.1具有启闭运动规律的调节给定量
圆形筒阀在启闭过程中,根据其安装结构及位置可知:在运动到全行程的中间段时,各缸允许发生的偏差小,为了保证液压调节系统的调节品质,可将给定量降低,放慢筒阀运行速度。在动水关闭过程中,为了控制蜗壳水压上升率,筒阀关闭速度可分段进行设置。其他启闭规律可在筒阀的运行实践中总结得到,通过编制具有启闭运动规律的调节给定量实现。
3.3.2基准缸判断
把每一次开关动作完成后的慢及行程小的一缸作为下一次筒阀启闭运行的基准缸,因为此缸响应调节量的能力弱,让它只接收固定的给定输出,调节其它缸的输出量以适应基准缸。
3.3.3油压参与调节
    当某缸油压上升速率超过设定值,说明此油缸侧运动受卡阻,此时应降低基准缸的给定值,使系统调节变得更加平缓,顺利完成启闭操作。
3.3.4保护及信号设置
    油缸油压或四油缸油压之间的差值超过某一整定值油压保护动作;链条张力过载保护通过行程开关接点进行调整;全开、全关极限位置也是在相应位置安装行程开关实现。为了防止油路系统的油垂效应,在临近全开、全关位置时减小比例阀开度,并延时返回开启和关闭中间继电器。现场控制柜装设有以下信号:全开、全关、中间位置、1#-6#链条张力过载。
3.3.5相关参数显示
因为现场控制柜安装了操作显示终端,通过PLC算术指令的运算可以得到多个有关筒阀运行的参数并在一个画面内显示,如各缸的行程、各缸比例阀阀芯位置反馈电压、比例阀阀芯位置(占各阀全开的百分比)、油压、运行速度、筒阀下滑、每次开关经历时间以及各个故障信号、全开全关信号、中间位置信号、下滑信号以及各缸油压、控制量、比例阀开度与位移的关系曲线等。



4、设手动调节功能,保证控制系统的可靠性
当链条张力过载筒阀卡死在中间位置或PLC控制系统故障时,可将“手动/自动”切换开关置“手动”位,各缸比例阀直接由功放输入给定电位器调整。
5、与计算机监控系统通讯,提供现场更多信息。
为了与计算机监控系统各机组LCU的工控机通讯,特在PLC内开辟一个连续的数椐寄存器与中间继电器寄存器区,将要上装的数据和状态变量放在一起,以便工控机快速读取。工控机与PLC的通讯协议是MITSUBISHI  PLC通讯协议;数据传输格式:RS422  异步;通讯速率:9600bps;转送的字符:ASCII字符,其中1个起始位,7个数据位,1个奇偶校验位, 1个停止位;字符奇偶校验:偶校验偶数据;数据转送结果校验方式:和校验。
6、结束语
PLC控制技术运用于筒阀的控制,有效地解决了筒阀多只油缸的同步问题,tigao了系统的可靠性,减少了油缸数量,节省了投资,充分发挥了筒阀在水轮机运用上的多方面优势,而且实现了与计算机的通讯,为计算机远方监控提供了功能完善的现场单元。


展开全文
优质商家推荐 拨打电话