浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7222-1HD22-0XA0库存充足

西门子6ES7222-1HD22-0XA0库存充足

1 前言

  某厂轮机参数监控系统,因为轮机参数比较多,如果将全部仪表带到现场查看的话,等到将所有参数查看结束的时候,这些参数已经没有实际意义了。因为各个参数间隔的时间太长,不是在同一时间下的参数没有多大的参考价值,只有在同一时间的所有参数才有紧密相关性。采用组态软件把轮机的所有参数在一个界面上完全显示,一目了然,节省了去看现场仪表的时间,省去了不必要的麻烦,而且可以直接在界面上设定各个参数,可谓是事半功倍。

2 世纪星组态软件

  在计算机基础上的SCADA 系统近年来发展迅速,世纪星组态软件是北京世纪长秋科技有限公司历时十几年开发的在bbbbbbS 环境下解决生产和过程自动化、可视化信息、显示和实现控制策略,即实现SCADA 系统人机接口(HMI-Human Machine Interface)的组态软件。它提供了适用于工业的图形显示、报警、数据记录以及报表的各种功能,能实现高性能的过程偶合、快速的画面更新和可靠的资料处理,具有较高的实用性。它在bbbbbbs标准环境中提供确保可靠地控制生产过程的所有功能。

  世纪星组态软件具有丰富的软件接口,很容易结合标准的或用户的程序建立人机接口,jingque地满足生产实际要求。使用者可应用世纪星作为其系统扩展的基础,通过开放接口开发自己的应用软件。世纪星是基于32 位的应用软件,bbbbbbs 32 位操作系统的多任务的特性确保了对过程事件的快速反应,并提供了多种防止资料丢失的保护。世纪星组态软件使用了面向对象的软件编程技术,将所有工程工具的组态功能集成在一起,提供用于过程可视化和操作的全部基本功能。此外,提供宽范围的编辑功能和接口,使用户为其独特的应用单独组态。

3 轮机参数监控系统构成和主要作用

  以下是宁化401轮机上用的设备及系统组成图。

  设备参数用了一系列的百特仪表采集通过485通讯线传送到上位机,由上位机显示并显示报警,如图1,图2所示。

图 1

图 2

4 监控系统组态界面设计

  4.1轮机运行时系统各部分的温度要实时监控,如下界面显示。

  左主机温度压力显示,如图3所示:

图 3

  右主机温度压力显示,如图4所示。

图 4

  主机运行状态显示,如图5所示。

图 5

  辅机系统温度压力显示,如图6所示。

图 6

  辅机系统监控(一),如图7所示。

图 7

  辅机系统监控(二),如图8所示。

图 8

  报警值设置,如图9所示。

图 9

  报警记录,如图10所示。

图 10

  报警参数设定完毕以后系统就会按照报警参数的设定记录报警情况。

5 结语

  该系统的功能主要是参数采集、显示以及报警情况记录,报警窗口由世纪星组态软件提供,使用时只需提供相关函数,进行简单的操作即可。

2.系统功能

  轻轨精整PLC智能控制系统包含铣床和钻床控制,实现的基本功能如下:

  (1) 切换功能:可实现手动与自动控制的切换。在通常情况下使用自动档,当需要检修或调试的时候,切换到手动档。

  (2) 自动报警功能:发生异常情况,可随时报警。当夹紧头快下、动力头快进、动力头工进以及动力头快退四个部分中任何一段出现异常情况时,与之相应的声光报警就会动作,让现场工作人员迅速采取措施,避免或减少事故所造成的损失。

  (3) 自动记忆功能:配有“停车”及“继续运行”按钮。当工作过程中出现某些问题需要暂停运行时,按下“停车”按钮后,机床停止运行,各部分均停留在原处不动。再按下“继续运行”按钮,则机床继续运行。

  (4) 紧急停车复位功能:配备有“紧急停车复位”按钮。当在工作过程中发生异常,或中途突然停电后恢复时,按下此按钮使机床各部件回到加工前的初始状态。

  为实现上述功能,需要对运行过程进行智能判断,进行相应的控制。同时考虑到PLC的运算功能的限制,需要加入故障诊断模块,并进行相应的显示。

3. 系统组成

  PLC选用三菱公司的FX2N系列可编程序控制器实现[1],由可编程序控制器构成的轻轨精整智能控制系统结构如下:



图1. 轻轨精整智能控制系统结构图

  该系统有输入、控制运算和输出三大部分组成。

  1)输入部分包括操作按钮和信号检测两部分。

  a.操作按钮用来人工设置参数或进行手动操作,处理紧急情况。

  b.信号检测是由传感器自动监测生产线上机床的工作情况,一旦出现异常情况,马上报警提示操作者,以进行相应的故障处理,如紧急停机处理等,从而避免事故的发生。

  2)控制运算部分

  控制运算部分主要由PLC来完成,由控制系统的应用软件来完成信号的输入、处理、控制输出的主要功能。

  3)输出部分包括报警装置、输送和动力装置、固定装置

  a.报警装置由闪烁的红、黄、绿三种颜色灯和报警铃声构成,三种颜色分别对应三种不同报警级别。绿色表示系统正常,黄色表示系统参数超范围,但仍能工作,需要进行处理;红色报警并伴随报警声音,必须紧急停机处理。

  b.输送装置由PLC输出的信号控制主电路,给电机发送指令,让其自动完成原料的传送与动力传送。

  c.液压装置是固定装置,由PLC控制器给定的信号,经电磁阀控制液压设备,将原料固定在某一位置,为原料加工服务。

4.系统软件设计

  4.1 PLC软件设计考虑的问题

  利用梯形图编制控制程序,在 PLC软件设计中要考虑以下几个问题:

  (1) 强电关断优先原则:在铣床软件设计中,只要控制信号中有强电关断的信号,则不管其它信号如何都要关断强电。如图2所示,只要关断信号 XO2=1,则中间继电器 M100 都要被关断。 (2) 动作互锁原则:有些控制不能同时动作,就要进行互锁。如主轴正、反转控制,图 3为主轴互锁控制示意图,任何一个回路启动后必须同时关断另一 个回路,从而保证两者不能同时动作。



图2



图3

  (3) 顺序联锁控制原则:即有些控制要求次序不能颠倒,这就要求前一个动作常开触点串在下一个控制动作中,同时将后一个动作中的常闭触点串在上一动作的控制回路中,如图4 所示。



图4

  影响PLC控制系统的因素很多,只要我们在软件设计时充分考虑到各方面因素,就可避免出现故障,控制系统的运行就会更加稳定 [2] 。

  4.2 PLC基本控制程序设计

  具体铣床控制功能框图如图5所示,钻床控制功能与之类似。



图5. 铣床控制顺序功能框图

  4.3 故障诊断模块的程序设计

  对于PLC系统,由于内存资源有限,复杂的智能诊断难于实现,为此加入了故障诊断智能模块,该模块以单片机为基础,采用C51编程,可方便实现各种控制算法。

  采用故障树推理与专家经验规则推理相结合的方法,利用智能模块的I/O功能及内部信息进行故障诊断。[3][4]

  (1) 故障结构分析

  在进行故障诊断设计时,首先必须对整个系统可能发生的故障进行分析,得到系统的故障层次结构,利用这种层次结构进行故障诊断部分的设计。图6为系统的故障层次结构。



图6. 故障层次结构框图

  (2)程序设计

  系统故障结构的层次性为故障诊断提供了一个合理的层次模型。在进行系统的程序设计时,应充分考虑到故障结构的层次,合理安排逻辑流程。在引入故障输入点时应注意两点:

  a. 必须将系统所有可能引起故障的检测点引入PLC,这主要是从系统的安全可靠运行考虑,以便系统能及时进行故障处理;

  b. 应在系统允许的条件下尽可能多的将底层的故障输入信息引入PLC的程序中,以便得到更多的故障检测信息为系统的故障自诊断提供服务。

5.结束语

  经过在线调试和工业试验运行阶段后,该控制系统已于2004年正式投入运行,运行以来,效果良好,实现了预定的控制功能要求,克服了继电器、接触器控制带来的局限,避免了原控制系统辅助元件多、故障率高、工作噪声大、控制方式单一、维护困难等问题。手动与自动切换方便,抗干扰能力强,适合钢厂生产线的恶劣的工作环境,且易于计算机通讯,实现网络监控。

  本文作者创新点:将PLC和单片机结合,设计了用于轻轨精整钻、铣床设备的控制系统,并使之具有故障诊断和报警功能,系统结构简单,操作方便。


展开全文
优质商家推荐 拨打电话