西门子6ES7231-7PC22-0XA0选型说明
一、系统概述
FA506型细纱机是目前成纱质量好,自动化程度高,操作简单,便于管理的环锭细纱机,适用于纯棉或化纤的纯纺和混纺的细纱工序,尤其采用PLC作控制器,不但tigao了控制精度,而且解决了生产管理方面存在的缺陷,大大降低操作者劳动强度;同时锭子曲线控制也tigao了纱线的质量,保证了纱锭成型,tigao了全机的产量。
系统设计特点:
1、 用PLC控制整个纺纱过程,具有程序开车、钢领板自动升降、中途停车后自动跟踪开车、自动落纱、自动留头等。
2、 设定纺丝的工艺参数,依据工艺要求自动协调控制;实现定长落纱和锭子速度曲线控制。
3、 显示纺纱过程的锭速、牵引倍数、细纱号数、捻度以及班产累计等。
4、 采用数字通信,tigao了系统的抗干扰性。
二、系统硬件
电气控制系统包括:数字量输入及数据检测部分、可编程控制器部分、执行机构、人机界面。见图一
1、 数字量输入及数据检测部分:
1) 各种数字量开关 包括开停车开关、功能开关,用于开停车与实现工艺要求的各种功能动作。
2) 三自动检测部分 由关主电机、下钢板、刹车传感器构成。其作用为当落纱开始后能自动适位停车、自动留头、为重新开车降低断头创造条件。
3) 数据检测部分 由主轴、前罗拉、后罗拉传感器组成。其作用是自动检测纺纱过程中主轴、前后罗拉的运行数据,为计算班产量、锭速、牵引倍数、细纱号数、捻度等工艺参数以及为锭子速度曲线控制提供数据。
2、 可编程控制器(PLC)部分: 该部分主要由永宏FBs-60MC主机与扩展模块构成,可编程控制器专为工业环境而设计的通用自动化装置,它吸取了微电子技术、计算机技术及自动化技术的新成果,采用可编程的存储器,实现逻辑运算、顺序控制、定时、计数和算术运算,并通过数字式、模拟式的输入和输出控制各生产过程,永宏FBs-60MC主机有16点数字量输入、24点数字量输出,可带7个扩展模块,本系统设计所有数字量输入全部由主机完成,模拟量输入由扩展模块有 FBs-6AD 完成
3、 执行机构 包括主电机、吸风电机、钢领板升降电机、自动润滑装置、自动清洁装置、变频器、落纱电源等,用于完成纺纱过程的全部工艺动作。其中变频器锭子速度控制由变频器、锭子传动部分、主电机构成。其作用是变频器根据PLC的指令(锭子速度控制曲线)自动调整锭子运行,tigao纱线质量和产量。
4、 人机界面 采用TP27触摸显示屏做人机界面,完成参数设定、显示,可直接设定锭子运行曲线,实现控制柔性化。并能根据工艺要求修改参数。TP27与PLC 之间以PPI协议通讯。
二、 软件设计:
电气控制软件分为:控制主程序、参数设定显示子程序、计算采样子程序、数字通讯子程序和锭子运行曲线子程序。
1、 控制主程序 软件主控制程序部分,依据工艺要求编制的程序,上电后自动检测各开关量和传感器输入的数据,完成整个纺纱过程自动控制和调用子程序。
2、 参数设定显示子程序 主要依据TP27配置完成参数设定显示,包括班次设定、错误设置提示,总产量、班产量累计显示、锭子速度、前罗拉速度、牵引倍数、捻度、产量、细纱号数等参数显示。 其中参数设定菜单程序结构见框图二
3、 计算采样子程序 主要依据主轴、前罗拉、后罗拉数据检测传感器采样结果以及设计参数完成系统计算,用以完成各类显示参数的计算及定长落纱等功能。
4、 数字通讯部分和锭子运行曲线子程序 主要采用自由口通讯协议完成与变频器的数据传输。通讯设置自由口通讯控制寄存器设置为自由口通讯方式,程序通过接收中断和发出中断以及发送指令XMT控制通讯口的操作,在自由口通讯方式下通讯方式由程序梯图控制。通讯设置还定义了波特率、校验方式和数据长度等。为了使锭子运行曲线平滑。在设定的点与点之间采用数学建摸的方法拟合发送参数,该部分程序框图见图三。
三、 通讯设计:
该控制系统大特点是应用数字通讯方式完成TP27与PLC以及PLC与变频器之间的数据传输。PLC的Prt0口与TP27连接,以PPI协议通讯完成参数设定显示, Port1口与变频器相连,以自由口协议通讯完成锭子运行曲线控制,以往我们进行锭子速度曲线控制时只能选用模拟量来控制变频器运行,这样硬件成本高且控制精度较低。采用数字通讯后,硬件仅为一条屏蔽线,抗干扰能力增强,为实现联网传输控制参数提供了条件,降低了控制成本;数字通讯高精度、高可靠性和低成本极大的tigao了机器性能比和市场竞争能力。
四、应用效果
FA506型细纱机控制系统前身采用PLC开关量控制和协议参数仪构成,全机控制精度低,可靠性和抗干扰性能差,系统成本高。采用永宏FBs-60MC系列PLC构成系统后,全机控制采取数字通讯方式,控制精度高,可靠性和抗干扰性能大为tigao。利用“tigao软件设计水平来降低硬件投入”原则,极大降低了系统成本,单机实现成本降低达控制系统的10%左右,极大tigao了产品盈利能力,市场前景十分广阔。
1、引言
我国造纸行业自动化技术起步较晚,传统的计算机加板卡的控制方式在较长的时间内占主导地位。今年来,随着国家加大造纸行业的自动化力度,越来越多的工厂采用了DCS控制系统。
随着PLC的浮点处理能力的加强,PLC的组态灵活性,高可靠性,可以和计算机、操作员面板、其它PLC任意配合,适应各种不同的场合等特点逐渐被人们所认识,同时,PLC的现场网络化功能的加强,以及与Internet网络接口模块的相继开发,使它在工业DCS(集散控制系统)中的应用越来越广泛。
由于网络化PLC研究发展时间不长,各国的PLC产品没有统一的协议模式,通讯协议各不相同,使用户在使用某一公司的PLC产品作为下位机时,上位机一计算机必须使用同一公司的主态软件,其软件功能有一定的限制,造成用户自行开发的功能无法实现。探究其原因,主要是计算机与PLC之间的通讯协议不公开所至。对于一些协议公开的PLC产品,又因其繁复的“传输权”,造成多帧传输的复杂性。
本文针对OMRON C200系列的PLC产品,利用其开放的通讯协议,开发出主从通讯方式,自行开发出主态软件,组成DCS系统中的过程控制单元,并在工程上得以应用。
2、纸厂DCS控制系统结构
3、上位机与PLC在DCS系统中的具体分工
3.1PLC在DCS系统中的作用:
①所有现场模拟量的输入、输出信号的处理。
②所有现场数字量的输入、输出信号的处理。
③控制算法的执行。
④与上位机的通讯过程中,始终处于被动状态,不主动上传数据。
⑤OMRON CPT编程软件。
3.2上位机(计算机)在DCS系统中的作用:
①控制参数的设定,传输至PLC。
②现场工艺参数的设定,传输至PLC。
③现场所有信号的显示画面。
④历史查询,报表的制作和打印。
⑤通过以太网卡,将现场数据传输到工厂的局域网上,实现数据共享。
⑥与PLC的通讯过程中,始终处于主动状态,主动下载数据,主动向PLC要数据。
⑦WIN98操作平台,VB6.0编程软件。
4、OMRON C200系列的PLC产品的通讯方式
4.1传统的上位机和PLC主主通讯
发送帧的权利简称“传输权”,具有传输权的单元每次发送3帧后,传输权在上位机和PLC之间来回交换,见下图:
这种通讯方式的通讯时间较长,对于一台上位机联结多台PLC的组态方法,特别命令帧多131个字符,工程应用中,传输的正文字符通常大于132个字符,这就需要多帧传输方式。主主通讯对多帧传输时,由于传输权的频繁在计算机和PLC之间来回交换,通讯时间会更长,同时上位机主动下载和PLC主动上传,占用PLC的CPU处理时间,其次,对于计算机多帧下载数据,PLC的接受程序编制较为复杂。在实时精度要求较高的工业控制中,一般采用下面的主从通讯方式。
4.2主从通讯方式
由于主主通讯方式在工程实际应用中存在以上的几点问题,结合PLC的命令帧的格式,计算机作为上位机主要作用是显示、下载和通讯,加上计算机的CPU处理速度较快,系统可用资源较多,由计算机承担所有的通讯功能,将PLC的CPU从繁琐的通讯过程中解放出来,降低PLC的程序扫描周期,可以将更多的回路模拟量控制和复杂的控制算法加入程序中。
在主程序编制中,利用VB6.0计时器控件Timer的功能,创建一个计时器,定时以命令帧的方式将读取数据储存器(DM)区的命令Redd-DM Data (),以及读取内部继电器(IR)区的命令Read-IR Data ()发送至串口SendPLC(),检查串口缓冲区,接收到的字符串如果节点号,识别码均与发送指令相同时,如果检查到结束码为“00”时,认为此次接受的数据有效,通过处理接收到的字符串,将结果送到界面显示RevBuffer()。
由于纸厂DCS控制系统中由上位机所承担的控制参数、工艺参数的设定和下载并不是实时发送的,只有当控制参数、工艺参数改变时,才将新值下载到PLC的相应数据储存器(DM)区,通过按压界面上的软按钮触发事件Send-DM Data,将数据通过SendPLC(),发送到PLC相应的DM区。
对于下载数据中出现的多帧数据时,按照命令帧的容量(132个字符)分配帧结构,当l帧参数-F载时,检查串口缓冲区,接收到的字符串如果节点号,识别码均与发送指令相同时,如果检查到结束码为"00"时,自行发送2帧命令。出现一台计算机与多台PLC连结的方式,在组成命令帧的格式时,节点号按照网络系统中,各个PLC的网络节点号而定。
5、结束语
在以OMRON C200系列的PLC为基础,以其开放的通讯协议为依据,自行开发主态软件,组成DCS系统中的重要组成部分-过程控制单元,将DCS系统产品化过程中,我们觉得OMRON C200系列的PLC具有较强的组态能力,不仅适用于小型DCS系统(100个控制回路以下),通过过程控制单元的形式,将其使用范围扩大到中型控制系统(500多点控制回路),而且与其他公司的PLC和操作员面板有较强的兼容性。因此,具有较高的性价比。
1、概述
水轮机筒阀由法国NEYRPIC公司于1962年用于真机以来,通过一些中小水轮机的应用实践,逐步得到了完善。到1979年加拿大当时大的水电站LG-2,16台出力为338.5MW的大型混流式水轮机采用了圆筒阀之后,它的应用开始引起各国的注意,许多优点得到公认。因此,被越来越多的水电站采用。它的主要优点有:1、安装在固定导水叶与活动导水叶之间,同安装在蜗壳前的球阀、蝶阀相比,缩短了整个厂房的纵向长度,降低了工程造价;2、密封性更好,能有效抑制了导叶漏水对导叶的磨损。3、开启、关闭时间短,能更好地适应电力系统对水电厂快速开机的要求并能有效地防止事故情况下的机组过速。4、能消除机前阀门进出口处的收缩和扩散段伸缩节的附加水力损失。5、圆筒阀启闭为直线运动,关闭时可根据水压上升率调整关闭速度。而在圆筒阀的应用实践中如何保证多只接力器的同步成为筒阀控制的关键技术问题。下面就这一问题阐述应用PLC技术实现同步的原理和方法。
2、筒阀的结构及同步机构原理
传统的解决同步问题的主要方法采用接力器驱动链条同步,在筒阀圆周尽可能多地均匀布置多支液压接力器,每支接力器动杆(活塞)下端连接固定在阀体上,活塞上下运动可以驱动阀门启闭。各活塞的同步移动有由可逆传动的滚动螺旋副实现,它是在活塞上固定的一只滚动螺旋传动的螺母,螺母连接传动丝杆,当活塞上下移动时丝杆做正反旋转,丝杆上端连接齿轮将筒阀的垂直运动变为齿轮的旋转,齿轮带动链条一起连动其它接力器的齿轮同速旋转并反作用于其丝杆而实现多只接力器的同步。此同步方案的缺点在于:1)、直径大的筒阀将布置数量较多的接力器,增加整个系统的投资。2)、接力器油缸进油口无调节能力,均由调定的节流阀控制liuliang,接力器运行速度的调节控制没有按调节规律运动的随动性。3)、链条同步对发生异步的的油缸矫正能力差,易发生链条张力矩过载甚至拉断,导致筒阀启闭失败。4)、由于油缸进油量由节流阀调整固定,筒阀只能定速启闭,丧失了筒阀直线运动可按程序指定启闭速度进行启闭的优势。
3、采用PLC输出控制比例阀液压随动系统实现同步
此方案采用接力器直接驱动筒阀并控制其同步,滚动螺旋副和链传动的同步机构可以取消或作为辅助同步手段和保护措施。另外,接力器本身不需再设缓冲装置,缓冲功能由PLC控制程序实现。采用本方案与传统的同步控制系统相比有如下特点:1)、可以灵活地改变(修改控制程序)阀门关闭开启的运动规律,使之更符合机组运行之需要。例如:当事故紧急停机调速器主配拒动而需快速关闭筒阀是时,为了即快速又不致使蜗壳及压力钢管水压上升率过高可采用分段关闭的控制规律。2)、可以取消机械同步机构,大大简化控制操作机构从而精简筒阀的整体结构,节省机坑内空间,改善运行维护条件。3)、减少操作执行组件数量,降低工程造价。4)、利用计算机通讯技术,为实现计算机远方监控提供坚实的现场控制和数据采集单元。
图1、系统硬件构成图
3.1控制系统基本原理
该系统主要由硬件和控制软件两部分组成,其中硬件部分包含可编程控制器(本方案PLC选用三菱公司的FX2N-80MT)及其配套的A/D模块、通讯模块、接力器行程测量组件(选用磁感应高精度、高速脉冲输出)、信号功率放大板、液压比例阀、电源、操作开关、按钮以及信号灯等组成;其系统硬件构成如图一所示。软件由三菱公司配套可在bbbbbbS下编程的FXGP-WIN-C开发而得。系统的基本控制策略如下:整个系统可视为以位移量偏差为负反馈的闭环电液随动系统,在多只接力器不同步的情况下,以其中一只为基准,在给定的启、闭规律基础上按经典PI控制算法,产生控制量作用到液压比例阀上,液压比例阀控制油liuliang大小校正发生的不同步的偏差以保证各油缸的同步运行,其基本控制原理框图如图二所示。
图二、基本控制原理图
3.2各部分工作元器件特性
3.2.1控制运算部件PLC及其各功能模块
PLC(FX2N-80MT)是整个系统的核心控制部件,其丰富齐备的控制运算指令、优越的性能、现场编程调试的方便已成为实现各种控制的现场级设备。其主要性能指标有:运算速度: 0.08uS/步(基本指令), 1.52uS—数100uS(应用指令);用户程序内存容量:16K,系统程序内存容量:8K;应用指令:128种 298个;输入口:5组每组8个,其中高速记数口8个(X000—X007);响应速度:8个点合计小于等于20KHZ,自带电源容量:24V600mA;输入电源:AC/DC170V—250V。各功能模块:1)模数转换模块FX2N-4AD:用于接收压力传感器输出的4-20mA电流信号,将其变为PLC程序可用的0-1000的十进制数。其性能指标如下:功耗:DC5V30mA,模拟量输入范围:电压DC-10V--+10V大-15V--+15V(输入阻抗200K),电流DC-20mA--+20mA大-32mA—+32mA(输入阻抗250),;输出数字范围:-2047--+2047;分辨率:电压5mV,电流20uA;线性度:±1%F.S,采样速度:普通通道15mS,高速通道:6mS;3)数模转换模块FX2N-2DA:将PLC运算得到的控制量数值转化为电压信号输入到比例阀放大板控制液压比例阀。其性能指标如下:DC5V30mA,数值输入范围:-2047— +2047;模拟量电压输出: -10V— +10V,线性度:±1%F.S,分辨率:电压5mV(10V×1/2000),转化速度:普通通道18mS,高速通道:3.5mS;
3.2.2测量部件:位移传感器
选用美国MTS Temposonics III(PB/PH)非接触式位移传感器
原理:由询问信号的电流脉冲所产生的磁场(沿波导管运行)与位置磁铁产生的磁场相交产生一个应变脉冲信号,然后计算这个信号被探测所需的时间周期,便能换算出准确的位置。
性能及指标:分辨率:2um;响应速度:比其他测量方式:快4到20倍;提供网络数字输出SSI CANBUS PROFIBUS DEVICENET ;符合欧洲CE规格
3.2.3执行部件:比例阀(包括放大板)
此环节是电气控制信号与机械液压系统连接的关键部分,直接影响到控制系统性能的发挥,所以选用德国REXROTH的VT5005带阀芯位置反馈的自动式比例方向控制阀,其放大电路技术数据如下:电源电压DC24V,功率50VA,控制电压±9V,大输出电流:2.2A。
3.2.4操作显示终端
本系统选用三菱的GOT940触摸操作显示终端,其画面可通过配套的GT-DESIGE软件制作并通过专用通讯电缆AC30R-9SS与PC机连接进行数据传送及调试。安装此显示终端可丰富人机界面,同时监视多个参数,对即时分析筒阀开启、关闭的运行状态提供方便。
3.3、控制策略
利用三菱PLC丰富的指令编制控制程序,对于现场调试及不断完善、优化控制程序具有重大意义。整个控制程序的流程框图如图三所示。
3.3.1具有启闭运动规律的调节给定量
圆形筒阀在启闭过程中,根据其安装结构及位置可知:在运动到全行程的中间段时,各缸允许发生的偏差小,为了保证液压调节系统的调节品质,可将给定量降低,放慢筒阀运行速度。在动水关闭过程中,为了控制蜗壳水压上升率,筒阀关闭速度可分段进行设置。其他启闭规律可在筒阀的运行实践中总结得到,通过编制具有启闭运动规律的调节给定量实现。
3.3.2基准缸判断
把每一次开关动作完成后的慢及行程小的一缸作为下一次筒阀启闭运行的基准缸,因为此缸响应调节量的能力弱,让它只接收固定的给定输出,调节其它缸的输出量以适应基准缸。
3.3.3油压参与调节
当某缸油压上升速率超过设定值,说明此油缸侧运动受卡阻,此时应降低基准缸的给定值,使系统调节变得更加平缓,顺利完成启闭操作。
3.3.4保护及信号设置
油缸油压或四油缸油压之间的差值超过某一整定值油压保护动作;链条张力过载保护通过行程开关接点进行调整;全开、全关极限位置也是在相应位置安装行程开关实现。为了防止油路系统的油垂效应,在临近全开、全关位置时减小比例阀开度,并延时返回开启和关闭中间继电器。现场控制柜装设有以下信号:全开、全关、中间位置、1#-6#链条张力过载。
3.3.5相关参数显示
因为现场控制柜安装了操作显示终端,通过PLC算术指令的运算可以得到多个有关筒阀运行的参数并在一个画面内显示,如各缸的行程、各缸比例阀阀芯位置反馈电压、比例阀阀芯位置(占各阀全开
图三、控制程序流程框图
的百分比)、油压、运行速度、筒阀下滑、每次开关经历时间以及各个故障信号、全开全关信号、中间位置信号、下滑信号以及各缸油压、控制量、比例阀开度与位移的关系曲线等。
4、设手动调节功能,保证控制系统的可靠性
当链条张力过载筒阀卡死在中间位置或PLC控制系统故障时,可将“手动/自动”切换开关置“手动”位,各缸比例阀直接由功放输入给定电位器调整。
5、与计算机监控系统通讯,提供现场更多信息。
为了与计算机监控系统各机组LCU的工控机通讯,特在PLC内开辟一个连续的数椐寄存器与中间继电器寄存器区,将要上装的数据和状态变量放在一起,以便工控机快速读取。工控机与PLC的通讯协议是MITSUBISHI PLC通讯协议;数据传输格式:RS422 异步;通讯速率:9600bps;转送的字符:ASCII字符,其中1个起始位,7个数据位,1个奇偶校验位, 1个停止位;字符奇偶校验:偶校验偶数据;数据转送结果校验方式:和校验。