6ES7222-1HF22-0XA8大量现货
一 系统简述
某制药有限公司盐酸羟可酮生产工艺系统由三具反应釜二个干燥器组成,分别为氧化反应釜(简称R1);加氢反应釜(简称R2);中和、结晶釜(简称R3);双锥干燥器(简称 H1);成品干燥器(简称H2)五个部分组成,对这五个部分的温度控制搅拌控制压力控制是本方案的工作核心。
在温度控制中,针对此生产工艺系统的组成特点和工况条件,我们采用两级PLC串级控制方式进行系统温度的jingque控制。其中一级主PLC一台(西门子S7-315)负责控制工艺系统中五个主要设备的运行状态及所有数据的传输、显示和控制及报表图形的输出和打印,二级PLC二台(西门子S7-200)为第三方厂商制造的加热冷却设备中自带的控制器,其负责该设备的温度控制,并与一级PLC串级构成对三具反应釜两台干燥器内部温度的串级控制,从而实现jingque控温,控温精度为±1℃。
在安全保护中,将现场使用的工控机进行正压防爆处理,使其安全防护级别达到FM1级1区,温度组T4 (< =135度),并在每个操作台上设置一个紧急停止按钮,当生产出现急威非安全状况而又无法在短时间内解决时,按下其中任何一个紧急停止按钮都可将系统停止,大限度的保障人身及设备安全。
二 系统控制方案
2.1 对R1、R2、R3生产工艺流程的控制
2.1.1 R1、R2、R3搅拌速度的控制
其搅拌系统是由: PLC—变频器—搅拌电机—测速传感器—PLC构成的控制回路,控制范围:20-200转/分钟,控制偏差为5转/分。
本工艺要求R1、R2、R3在不同的生产时间里搅拌的转速是不同的,因此为了保证生产条件的一致性,减少人为操作的随意性,在转速控制系统中设置了五条在不同工况下的速度控制配方,而且每条配方都可根据具体工况修改,设定好后按顺序储存在系统中,在生产时操作人员只需调用配方的序号就可以完成每次生产中搅拌的起、停和中间转速的变换,因此对产品质量的保证起到一定的作用。而系统对转速的监控则是通过速度传感器将真实的搅拌速度上传给PLC,经计算绘制出理论速度与实际速度对比图,实现生产过程中对搅拌速度的jingque控制和完整记录。
理论控制速度与实际控制速度对比示意图:
2.1.2 R1、R2、R3的温度控制
对R1、R2、R3温度的jingque控制,是保证产品质量的重要条件,釜内温度控制范围:-10℃--+80℃,偏差控制在±1℃,加热冷却速率为2℃/分。生产工艺要求当R1、R2、R3的搅拌启动后方可启动它们的温度控制,否则不能启动,当搅拌停止工作则温度控制也停止工作。
其中R1、R2的温度控制方案如下
现以R1为例:因不同时段要求的釜内温度不同,为了使R1釜内温度受到jingque控制,故采用S7315与S7200串级控制方式来实现。当R1需要升温时系统程序对S7315和S7200下达梯度升温指令:
1 S7315关闭板式换热器的冷却水进水电磁阀。
2 S7315通过TIC-101釜内温度传感器,TV101三通控制调节阀,并结合当前SV值和升温速率组成一个以控制加热水水liuliang为单元的外环控制方式。
3采用无限逼近SV的PID控制方式控制加热机组中的热水温度形成内环控制单元,确保热水温度不超调。(由于进入R1加热水套的水温不会超调因此R1釜内的物料不会超调)
当SV-PV为负值时R1进入降温时段,系统程序对S7315和S7200下达梯度降温指令:
1 S7315通过DP通讯给S7200下达梯度降温指令,并给定当前SV值(此时的降温是以减少对加热机组来水的加热来实现的)。S7200通过TIC-102管道温度传感器采集水温温度数据,当TIC-102采集到的水温温度与来水的温度相差5℃时(在实际工作中可根据工况调整该值),加热完全停止。
2 系统程序检测到TIC-102采集到的水温温度与来水的温度相差5℃时S7315打开板式换热器的冷却进水电磁阀,启动TV101三通控制调节阀。
3 S7315通过TIC-101釜内温度传感器,TV101三通控制调节阀,并结合当前SV值和降温速率组成一个以控制冷却水水liuliang为单元的外环控制方式实现对R1的降温操作。
4 S7315在降温控制过程中,采用无限逼近的PID控制方式控制TV101三通控制调节阀的水liuliang,实现无超调控制。
R2的控制方式与R1相同
R3的控制过程:TIC-301为釜内温度传感器、TIC-302为夹套温度传感器,FC为加热冷却设备带liuliang控制器其作用是作一个逻辑条件,当FC有liuliang时才能启动加热冷设备,如没liuliang则设备无法启动运行。在程序设计中如此设定E=SV-PV,当E值为正时,则加热,为负时则冷却,同时加热与冷却互锁,只能启动其中之一。,同时对TIC-302作出如下设定,当加热条件为一定时,其上下限设定为±0.5度,其中釜内温度控制回路TIC-101是由S7-315组成的主调节器温度控制单元;釜夹套循环水温度控制回路TIC-302是由加热冷却设备自带的S7-200组成的辅助调节器温度控制单元。R3在加热过程中控制方式、控制输出与R1、R2相同,只是在降温的控制元件上略有不同,温控PID输出略有不同。那么运用串级控制回路如何实现jingque控制的呢?
2.1.2.1串级控制的原理
以下为标准图,串级控制系统是改善控制质量的有效方法之一,在过程控制中得到了广泛地应用,主要由以下几部分组成:
主调节器——按主被控参数的测量值与给定值的偏差进行工作的调节器,其输出作为副调节器的给定值。
副调节器——按副被控参数的测量值与主调节器输出的偏差进行工作的调节器,其输出控制调节阀动作。
2.1.2.2串级控制的具体方案
本方案的串级控制回路图如下:
从上图中可以看出,本方案中的主调节器由西门子S7-315组成,而副调节器则由西门子S7-200组成。
主调节器根据工艺上要求的釜内温度值(即设定值),与测量到的釜内实际温度值(即过程值)进行PID运算,其输出作为副调节器的给定值,副调节器根据主调节器的输出值(即副调节器给定值)与副调节器输出的循环水温度值(过程值)的偏差进行运算,其运算结果控制循环水的温度,再将循环水注入反应釜夹层内,从而控制反应釜内的温度。
串级控制的主要特点:
1 改善了被控过程的动态特性,tigao了系统控制质量;
2 tigao了系统的工作频率;
3 具有较强的抗扰动能力;
4 具有一定的自适应能力。
串级控制的应用场合:
1用于克服被控过程较大的容量滞后;
2用于克服被控过程的纯滞后;
3 用于抑制变化剧烈而且幅度大的扰动;
4 用于克服被控过程的非线性。
2.1.2.2 温度控制的监测和数据的输出
系统的主PLC除了完成系统温度的串级控制外,还要将辅助加热冷却设备的控制参数和温度参数读取后,在加热和冷却过程中计算出加热速率、冷却速率,并结合理论控温曲线绘制出实际控温曲线,实现对生产过程中反应釜温度的监测、控制和完整记录。
理论控温曲线与实际控温曲线对比示意图:
2.1.3 R1、R2、R3的压力的控制
保持釜内的合理压力是安全生产的一个重要环节,通过高精度的压力变送器(精度0.25‰)将采集来的压力值送给系统,在程序中采用两级安全报警系统来保证反应釜的安全生产(报警值的大小根据现场工况的具体情况而定制)。
1 当反应器压力超压达到一级时,蜂鸣器启动,提醒操作人员反应系统已超压,请注意操作,人机界面出现黄色超压对话框,直到人为干预将超压解决,系统恢复正常。
2当反应器压力超压达到二级时,蜂鸣器启动,人机界面出现红色超压对话框,同时系统自动关闭进料阀并打开反应器的放空阀,停止其它的运行步骤,直到人为干预将超压解决,系统恢复正常。
其中对R2的压力保护是系统压力保护的重点。
2.2对H1、H2的控制
当操作人员在人机界面上启动H1、H2时:
1 S7315通过控制智能马达控制器控制干燥器的转速。
2 对H1、H2升温的控制与R1一样。主系统只将温度和压力数据采集后在系统中记录运算并以表格或曲线图的方式输出打印,实现对生产过程中温度、压力的jingque控制和完整记录。
2.3对真空系统的控制
在主系统界面中设置两套真空泵的启动按钮和停止按钮,不对真空度等参数进行控制。
三 控制系统的构成及特点
3.1操作控制台的选型
因本案的生产场所为有氢气存在的1区 危险场所,所以要求操作控制台必须为防爆型产品,并且防爆等级必须为 Ex(ia)ⅡC T4及以上。通过对市场的了解,得到以下几种信息:
1: Proface触摸屏有一款具有防爆功能且通过欧洲的防爆认证,但在国内好象没有通过该项认证,而且价格昂贵。
2:德国P+F EXTEC的防爆屏可在1区使用,并通过国内防爆认证,但进近二十万的价格对本案来说似乎也高出了许多。
3:采用隔爆式防爆箱将将触摸屏特殊处理后封装,达到防爆的目的,价格较为适中。
4:采用正压式防爆操作控制台将工控机;显示器封装后用防爆键盘防爆鼠标操作,达到防爆的目的,价格较为适中。
针对以上4种方案,结合本案的实际情况:第1、2方案都是进口防爆触摸屏,性能好使用不方便,而且价格奇高。在本案中使用成本似乎有些过高。第3种方案的防爆方法效果较好,但是由于触摸屏的功能有限,屏幕相对小,对于复杂的工艺界面不能有效的表述,而且放在防爆区的触摸屏较昂贵,且要使用的时间很短,戴手套不能对触摸屏进行操作,触摸屏使用时间不长,就会变得很脏还会有故障产生。另外在程序设置时要加入很多的嵌套,会影响触摸屏的反应速度。第4种方案采用正压防爆控制台,首先将工控机安全封装,其次运用专有的屏幕防爆技术将工控机的显示器封装后用防爆键盘防爆鼠标操作。该操作控制台有正压气源自保护系统,当控制台的压力未到安全值时控制台不能上电,该产品有国家防爆认证,防爆等级达到 Ex(ia)ⅡC T4以上,实现了安全防护。在操作上简单直观,tigao了操作速度,对多重界面的操作更是游刃有余。与第3方案相比在使用上性价比更高,在设计理念上更为人性化。因此将该方案定为。
3.2 WINCC组态软件
WinCC代表bbbbbbs Control Center(视窗控制中心)是工控软件技术上的。目前在PC基础上的操作员监控系统近年来发展迅速,用于监视和控制的SIMATIC HMI产品中,WinCC具有控制自动化过程的强大功能,是基于个人计算机,同时具有极高性价比的SCADA级的操作监视系统。WinCC的显著特性就是全面开放,它很容易结合标准的和用户的程序建立人机界面,jingque地满足生产实际要求。因此作为Siemens TIA概念的一部分,WinCC可与属于SIMATIC产品家族的自动化系统十分协调地进行工作。
3.3 本案控制系统的特点
3.3.1安全性好
基于多年为石化企业做工控的经验,我们的系统开发首先以安全为主,安全性好不好是一个系统成败的关键。在本次系统设计中我们对软件和硬件的安全性做了较为充分的论证,根据用户的要求本系统以防爆为主线。首先在程序中设置了多处应对安全的不同措施大限度的用程序的安全来保证生产的安全。其次两个操作控制台采用正压防爆保护方式,实现了与现场环境的隔绝,达到了一级区域的防爆等级。第三在每个控制台上我们安装了一个防爆急停按钮,一旦工作中出现非安全情况,按下后就可将整个系统强停,大限度的保障人身及设备安全。后在控制柜中根据不同的用电器分别设置不同的熔断器、过载保护器、短路保护器等常规电气保护单元。
3.3.2实用性强
在系统设计时强调以人为本的设计理念,降低使用操作的难度,使操作人员一学即会得心应手,在人机界面及控制方式上以实用好用为目标,用简单的方法实现不简单的控制。比如:在人机界面中将受控运行的设备用动画形式表现出来,加热制冷设备的运行状态用不同的颜色表示出来,当为反应器加热时循环水回路用红色表示出来;冷却时循环水回路就用蓝色表示出来,系统中还有很多地方用到这样的设计,使操作者一目了然。
3.3.3可靠性高
依靠多年的系统集成经验和方法,我们将使S7315发挥出通讯能力强,控制精度高的特点,并在软件与软件之间;软件与硬件之间;硬件与硬件之间的联接、通讯、数据交换有可靠的保证,使系统运行安全、快捷、稳定、准确,远程监控得心应手一目了然,更便于主管领导对生产状态的了解和监控。强大的报表功能将记录生产中的每个细节,便于您在产品质量的追溯中查找问题。
四、总结
这是一个用以太网和两台上位机通讯,一个315-2DP和多台S7200通过PROFIBUS进行数据交换。主要采用PID算法对温度通过加热器和调节阀进行控制。控制精度为正负0.8度。控制精度远远超过了用户正负2度的误差。
一、模拟量部分介绍
(一)模拟量输入
CX2N系列控制器将多路模拟量输入结合在一起,常用的模拟量输入和温度类型有(4-20mA/0-20mA/0-10V/NTC10K/PT100等)。模拟量输入通道是12位A/D转换。根据plc内部指令,读取相对应电压输入值或电流输入值,是一种具有多可定制为20路输入,高jingque度的结合控制器,通过简易的调整或内部计算可根据环境的需求来进行相对应的修正。
CX系列plc-AD的技术指标
(二)模拟量输出
CX2N系列控制器将多路模拟量输输出结合在一起,常用的模拟量输出类型有(0-5V/0-10V/0-20mA等)。模拟量输出通道是12位D/A转换模块,是一种具有高jingque度的输出。通过简易的调整可改变模拟量输出的范围。
CX系列plc-2DA的技术指标
二、特殊检测以及控制端
(一)380V特殊检测端
在CX系列可编程控制器硬件的右侧,可以连接1路特殊380v的电压检测,对应了内部的寄存器,寄存器中0-4000的数字量对应着0-380V的电压值。
(二)电子膨胀阀特殊控制端
CX系列可编程控制器特殊端子,分别特殊命名了:MA-MCA-MC-MD-MDB-MB等端子的特殊使用。
(四)编程举例
CX-系列PLC控制器, 型号CX2N -48MR,可编程控制器中的D0和D1分别接收这两个通道输入量平均值数字量,并编梯形图程序。
梯形图
案例:制冷冷库温度控制
一、动作要求分析
该制冷系统使用两台压缩机组,系统要求温度在低于12℃时不起动机组,在温度高于12℃时两台机组顺序起动,温度降低到12℃时停止其中一台机组。要求先起动的一台停止,温度降到7.5℃时两台机组都停止,温度低于5℃时,系统发出超低温报警。
二、硬件设计
在这个控制系统中,温度点的检测可以使用带开关量输出的温度传感器来完成,但是有的系统的温度检测点很多,或根据环境温度变化要经常调整温度点,要用很多开关量温度传感器,占用较多的输入点,安装布线不方便,把温度信号用温度传感器转换成连续变化的模拟量,那么这个制冷机组的控制系统就是一个模拟量控制系统。对于一个模拟量控制系统,采用可编程控制器控制,控制性能可以得到极大的改善。在这里可以选用CX2N-48MR-20AD-10A410NTC10模拟量输入单元,就能方便的实现控制要求。
1 前言
众所周知,PLC自从问世以来就在自动控制各个行业发挥着难以取代的核心控制作用。PLC运行可靠,适用于各种恶劣的工业环境,PLC和工控机(IPC)相比,其运行可靠、可扩展性好、便于电气连接、控制更,但是工控机良好的人机界面,方便语言都是PLC所不能比拟的。
组态软件在很多场合应用于控制,可整个控制的中心往往还是PLC,组态软件(上位机)所起的控制作用很小。人机界面一般用于简单的动作控制,工艺参数的编制,配方的设定等等,虽然在概念上属于控制范畴,但它并未真正起到核心控制作用,因为真正长期的自动运行控制是由PLC完成。我们不经常使用工控机作为核心控制部分的原因有两点:,工控机不适于在很恶略的环境下运行;第二,工控机经常采用的bbbbbbs系统并不能够让人放心,其长期运行效果并不好。
尽管PLC、IPC在自动化控制中扮演不同角色,在许多运行连续时间较短,环境相对比较好的地方,人们还是希望使用IPC进行核心控制。使用IPC进行核心控制有很多种实现方式,当然其中为简单的办法就是使用组态软件。
本文针对使用组态软件做控制中用户经常遇到的问题进行讨论。在许多用户使用组态软件进行控制,尤其是使用串口连接方式进行控制时,发现组态软件自动控制会影响的数据的采集速度,本文着重介绍如何解决此问题,解决此办法就是——将PLC的控制方式模仿的应用到上位机串口控制中。
2 用户使用组态软件控制后,导致数据采集慢的原因
这是许多组态软件用户在编写上位机自动控制程序中所遇到的问题,到底是什么原因?能否有好的办法来解决?
我们先简单描述组态软件数据采集控制的原理。在正常情况下,组态软件定时向下位机发出读命令来等待下位机回应以截取想要查询的数据,周而复始的循环,数据便动态的显示在上位机上,实现数据“实时采集”。那么当我们需要对下位机进行控制时,组态软件就会相应写命令,实现上位机对下位机的“实时控制”。
表面上看去合情合理,可为什么会出现数据采集慢这种情况?原来一切“归咎于”组态软件的读写机制。组态软件为实现快速的控制,所以给写命令高的优先执行权,也就是说,当有写(控制)命令时,组态软件首先执行写命令,直到没有写(控制)命令时组态软件才恢复正常的读(采集)循环。
由此,我们不难发现用户经常出现数据采集慢的原因。如果用户频繁将控制指令发出,系统将分配很少的时间给数据采集,从而导致数据采集变慢或者中断。用户在循环指令中重复给一个变量赋值(如y0=1),就会导致以上问题,所以我们的解决办法就是需要控制时控制,不需要控制时放手。为了实现这种控制方式,我们可以参考PLC的运行模式。
3 PLC运行原理
在没有中断的情况下,PLC采用“顺序扫描,不断循环”的工作方式。
1) 每次扫描过程。集中对输入信号进行采样,集中对输出信号进行刷新。
2) 输入刷新过程。当输入端口关闭时,程序在进行执行阶段时,输入端有新状态,新状态不能被读入。只有程序进行下一次扫描时,新状态才被读入。
3) 一个扫描周期分为输入采样,程序执行,输出刷新。
4) 元件映象寄存器的内容是随着程序的执行变化而变化。
5) 扫描周期的长短由三条决定:
4 小结
如上所述,在组态软件控制中,我们采用先运算再输出的方法,即,对IO变量有循环复杂运算操作时,我们采用中间变量计算,待计算出结果时我们再对IO变量赋值,这样就会解决控制中采集慢的问题。