6ES7221-1EF22-0XA0型号含义
在过去的几十年里,可编程逻辑控制器(PLC)一直被广泛用于自动化领域,而在可预知的未来,PLC仍将长盛不衰。面向离散控制而设计PLC的实际上已经成为工业领域一个具有伟大意义的统治性工具。
然而,随着工业用机器和工厂系统的复杂性的增加,PLC已经很难而且也不可能成为完成所有自动化任务。现在的自动化系统已经超越了PLC的功能范围,使得工业机器领域的工程师必须在自动化系统中集成更多更先进的I/O、处理和控制策略。
新的可编程自动化控制器(PAC)硬件系统就是这样一个非凡的PLC系统扩展方案,能够很容易整合到PLC系统中,给工业机器增加更多的先进功能,并提高机器的效率。
需求:如何提高机器的效率
如何提高机器的效率?让我们来看看Integrated Industrial Systems (I2S)公司是如何做的。I2S在现有的PLC系统上实现极大的改进。这是一个来自美国的私有原始设备制造商,数十年以来一直致力于制造的轧制设备和控制系统,用于全世界的铁和非铁金属行业。在这一领域的雄厚技术底蕴使之成为行业的。
I2S也曾经长期使用PLC来自动化和控制生产的轧制设备。近几年他们一直在试图更新轧制设备控制系统,以提高效率和质量。为了提高炼钢设备的效率和质量,他们主要对其伽马测量系统进行了改进,以便能更准确地控制金属厚度。
数年以来,伽马测量系统一直是I2S产品家族中的标志性产品,现在依然广受欢迎,但是系统的很多硬件和软件特征都已经过时了。为了更新该系统并改进其机器,I2S公司需要一个具有更jingque的模拟输入分辨率的方案,以连接伽马测量传感器和信号处理,从而从传感器中获取模拟信号,实现高度jingque的厚度测量,再由PLC使用在轧制机器的控制系统中。
伽马测量仪技术
伽马测量仪使用“镅”作为恒发射源,这一发射源位于“C”框架组装的较低部。结构的顶部是一个接收器和前置放大器。当通过发射源和接收器之间的间隔时,金属带会吸收一部分辐射,吸收量视其厚度和密度而定。剩下的一部分就由接收器进行测量,并转化成带厚度测量。
实施改造步:现有设备试验
为了节省时间和费用,I2S先试着在已有的PLC系统中进行模拟测量和处理。但是,PLC的模拟I/O和信号处理无法达到所需的jingque度。I2S公司要确保运行于PLC中的控制系统不会因为额外I/O和处理的增加而减少。
因此,他们需要这么一个系统,这个系统能够从伽马传感器中获取模拟信号并进行处理以计算jingque的厚度测量值,并能将这个厚度测量插入到PLC控制系统中。但是,所用的PLC不适合高性能处理和高速模拟I/O。
第二步:如果现有设备无法奏效,就试试其它方法
在认识到PLC无法提供连接伽马测量传感器所需的I/O和处理后,I2S转向了PAC技术。它选择了国家仪器的CompactRIO PAC,以提供改进轧制机器质量所必须的附加功能。CompactRI/O是一个可重置嵌入式系统,既结合了传统PLC的优点和可靠性,又能提供更多I/O和处理。国家仪器的所有PAC都可以通过其LabVIEW图形编程工具来编程,因此可以很容易进行编程和配置。
第三步:添加I/O
CompactRIO有一个嵌入式现场可编程门阵列(FPGA)芯片和实时处理器,可通过内置的LabVIEW功能块来编程。另外,它还拥有超过30个模拟和数字I/O模块,具有内置信号调节(反锯齿、隔离、ADC、DAC等)、高速计时(模拟I/O速度达到800kHz ,数字I/O速度达到30 MHz)和高分辨率(24b ADC),可与任何工业传感器或者触发器连接。
图1:CompactRI/O架构
I2S使用CompactRIO模拟输入模块来连接伽马级厚度传感器,以提供jingque测量所需的高速计时和分辨率。由于每个I/O模块都是直接和FPGA相连的,工程师们于是能使用LabVIEW FPGA来轻松自定义CompactRIO的模拟I/O速率。
第四步:添加处理
从伽马传感器获得模拟数据之后,CompactRIO使用内置的NI LabVIEW实时浮点功能块来在实时处理器中对数据进行处理,并将之转化成jingque的厚度测量。
LabVIEW的实时功能块对数据进行确定的对数处理(如下面的等式1和等式2所示),以进行计算厚度测量值。由于LabVIEW Real-Time具有内置计算和分析功能,PAC能够很容易进行这一操作。
等式1:log I = (log I0)y/μ = (y/μ) log I0
等式2: y/μ = log I0/log I = log (I0-I)
CompactRIO系统在FPGA和实时处理器中进行所有的I/O和信号处理,并将高jingque度厚度测量传输到相连的PLC上,又不会降低现有PLC控制系统的速率。借助于CompactRIO的性能,I2S的工程师可以为伽马级传感器添加这一自定义测量和分析功能,而不需要牺牲轧制机器的控制速度。
第五步:整合PAC
每个轧制机器都带有三个形成网络的CompactRIO系统。这三个系统都是智能节点,能利用一个工业标准Modbus/TCP、TCP/IP或UDP协议进行通信。其中有两个系统与伽马级传感器连接,并进行模拟输入测量和处理,来计算jingque厚度测量值。
图2:典型系统拓扑
第三个CompactRIO系统则从另外两个系统中取得厚度值,并转换成模拟输出测量值,输入到正在控制轧制机器的PLC上。所有三个系统都通过以太网连接实现了互连,并使用一个UDP以太网信息协议来传输厚度测量值计算。将PAC连接到现有PLC架构上有三个基本方法:
1.基本模拟和数字I/O。模拟/数字信号能够从PAC输出到PLC中。这是将PAC整合到PLC的一个基本的方法。I2S公司就是运用这种方法来将处理过的数据从CompactRIO PAC传输到运行轧制机器控制系统的PLC上的。
2. 工业网络。大多数PAC产品都支持工业协议,如DeviceNet、Profibus 、 CANopen以及基于以太网的协议如TCP/IP、UDP和Modbus TCP/IP。这使得工程师在连接PAC到PLC上时有很多网络选择。I2S公司运用的是以太网协议来在CompactRIO PAC之间传输数据,并将PAC和PLC连接到形成网络的HMI。
3. OPC Connectivity PAC还可以作为OPC客户端或者服务器,并通过OPC标签来收发网络数据到PLC或其它PAC上。OPC标准提供了一套标准的流程,让不同厂商的自动化系统之间可以很容易实现连接。
处理过的数据会以不到20毫秒的间隔在通过以太网互连的CompactRIO系统之间传输。CompactRIO测量值的获得、处理和传输速度都很快,因此,将jingque厚度测量值键入到PLC控制系统的过程丝毫不会降低整个系统的速度。
I2S公司可以很容易通过基于LAN的CompactRIO系统和10/100 Mbps以太网接口将系统连接到形成网络的Allen Bradley PLC,并利用一个标准的TCP/IP协议将之连接到人机接口(HMI)系统。轧制机器中的所有仪器都通过以太网实现了连接,因此不需要在一个电器噪音嘈杂的环境下长距离地传输模拟信号了。
1前言
在工业应用领域,大部分机械设备都采用先进、实用的控制产品对生产过程进行控制,以提高设备运行的可靠性和生产效率。但是,在农业应用领域,由于农机设备运行环境恶劣、操作人员技术水平偏低,绝大部分机械设备没有采用先进的控制产品,而是采用传统的手工操作和继电器控制。
中国是个农业大国,农机设备遍布大江南北。把性能稳定、质量可靠、功能强大的控制产品应用到市场巨大的农机设备中,对提高我国农业的自动化水平和农机企业的市场竞争力将会产生十分积极的影响。
本文介绍了和利时公司新一代小型一体化PLC在农用液压打包机上的应用,该应用在提高农机设备自动化方面取得了很好效果,具有很好的推广价值。
2系统概述
山东某液压机械制造有限公司是国内液压打包机械的企业,其生产的液压打包机行销海内外,得到用户的普遍好评。液压打包机广泛应用于棉纤维、亚麻、羊毛、纸边、服装、布匹、毛巾、麦草等松散物资的打包,为农用物质的仓储和运输提供了极大的方便。由于液压打包机一般应用在环境恶劣的室外或污染严重的生产现场,故对控制产品提出了较高要求。以前曾有自动化公司采用某国外品牌PLC对液压打包机的电气控制部分进行改造,但应用效果欠佳。我们对机器运行环境进行了现场考察和反复研究,充分考虑到了现场环境的恶劣性,在可靠性、稳定性等方面做了大量工作,提出了基于HOLLiAS-LEC G3小型一体化PLC的控制系统。实际运行效果表明,该控制方案达到了预期效果,大大提高了设备的自动化水平。
液压打包机控制系统由核心控制单元PLC和用于操作的人机界面组成,核心控制单元应用和利时公司的G3系列小型一体化PLC,人机界面采用深圳人机电子有限公司的新一代文本显示器MD204L。PLC包括1块24点CPU模块LM3107和1块8路继电器输出模块LM3222,输入、输出信号详见表1。
3系统功能
采用PLC控制的液压打包机可以实现自动脱包、自动提箱、自动转体、自动踩棉等功能,并能对生产过程进行实时监控,完成自动诊断、自动报警和数据上传等功能。为提高电气控制系统的可靠性,根据客户的实际需求,将经常出现故障的所有可以替换的开关按钮全部转移到人机界面上,包括油泵的启动/停止、踩箱的启动/停止、油缸的上升/下降/停止、提箱、开门、关门等操作按钮。另外,时间继电器的时间也在人机界面上设定,包括油泵电机启动延时继电器、踩箱电机避起延时继电器、踩箱电机断电延时继电器和油缸上升缓冲延时继电器。
液压打包机的控制部分包括油泵电机控制回路、踩箱电机控制回路、升降控制回路、提箱控制回路、预缷控制回路和开关门控制回路等,下面对各控制回路分别进行介绍。
油泵电机控制回路:通过文本显示器控制键盘的按键操作,按下“泵起”油泵电机的启动按钮,主接触器C1和Y接触器C2接通,同时油泵电机启动延时继电器,通过读取文本显示器上的时间值,并开始计时。时间到则Y接触器C2断开,同时△接触器C3接通,PLC的C2与C3两点互锁。按下“泵停”油泵电机的停止按钮,油泵电机正常停机。当电机发生过载或是有堵转情况发生时,主油泵热保护继电器RJ开关闭合,通过PLC程序控制主接触器C1立即断开,处于保护状态。故障排除后,重新启动、重新开机。当油缸超过上限或下限时,HC1和HC2都要在PLC程序控制中加以保护。通过设定油泵电机启动延时继电器的值可以任意改变Y—Δ启动转换的时间,保证佳转换状态。加上多重互锁和自锁,完成油泵电机的正常启动和运转,同时有指示灯显示电机的运转状态。
踩箱电机控制回路:通过文本显示器控制键盘的按键操作,按下“踩起”踩箱电机的启动按钮,踩箱过程开始,踩箱指示灯点亮,踩箱电机接触器C4接通,同时踩箱电机避起延时继电器读取文本显示器上的时间值,并开始计时。时间到,触发PLC内部中间继电器,踩箱结束,蜂鸣器H接通告知,同时踩箱电机断电延时继电器读取文本显示器上的时间值,并开始计时。时间到,循环结束,踩箱电机与蜂鸣器H停止复位。按下“踩停”踩箱电机的停止按钮,所有的时间继电器及中间继电器均复位,踩箱电机停止。我们可以对精度高达1ms的踩箱电机避起延时继电器和踩箱电机断电延时继电器任意调整,根据不同的工作状况选取不同值,极大地方便了用户操作,显著提高了生产效率。
上升、下降控制回路:上升与下降是两个相反的控制过程,由程序设计为互锁,以保证动作统一、安全。通过文本显示器控制键盘的按键操作,按下“上升”或“下降”按钮,箱体按程序动作,开始上升或下降,达到工艺要求。
提箱控制回路:系统提箱的控制必须保证在上升结束后进行,通过文本显示器控制键盘的按键操作,按下“提箱”按钮,提箱开始,当达到箱体上限位时,即为提箱结束。
预卸控制回路:按照工艺要求,预卸控制必须是在上升或提箱时间段以前进行。预卸全过程完全由PLC程序自动进行,油缸上升时即为预卸工序开始。读取文本显示器上的油缸上升缓冲延时继电器的时间设定值,同时开始计时,时间到预卸结束。
开门、关门控制回路:开门和关门是两个相反的控制过程,分别由文本显示器上的“开门”和“关门”操作按钮控制,内部中间继电器ZJ6和ZJ7互锁,分别完成开门和关门动作。
系统流程图如图1所示。
图1 系统流程图
人机界面上的主操作画面和时间设定画面如图2和图3所示。
4结束语
该控制系统已经成功应用在农用液压打包机上,降低了操作人员的工作强度,提高了设备运行效率和安全性,降低了能源消耗,提高了产品质量。从液压打包机在现场的运行情况来看,和利时的小型一体化PLC质量可靠、运行稳定、运行效果良好,能适应农机现场的恶劣环境,在提高农机设备自动化方面取得了很好效果,具有很好的推广价值。
一、前言
在我们的日常生活中,经常需要把一些单个物品分成诸如3、4、6、8、12等不同数量的物品组合包装为一体,以方便销售或携带,HW-800H型集合包装机正是适应市场的这种需求并参照国外同类机型结构的基础上开发、设计的。
二、技术要求
HW-800H型集合包装机的机械结构主要包括支撑框架、进料传送机构、封切机构、出料机构以及上、下供膜机构等六个部分。支撑框架主要用来安装、支撑各功能机构,技术上要求有足够的钢性和支撑强度;进料传送机构将包装物体按照指定的数量和包装形式输送到所需的位置后,推料汽缸向前运动,将待包装的物品向出料方向推动,在推动的同时,上、下供膜电机以适当的速度供膜,推料汽缸向前到位后快速退回,封切机构将包装用热收缩薄膜热封并切断,包装机又开始下一个工作循环。
为满足上述技术要求,其运动机构的控制主要有3台变频调速电机和8个汽缸完成。其中一台电机用于进料传送机构的驱动,另外两台电机用于上、下膜纸供给驱动,8个汽缸协调配合,完成对包装物品的阻挡、定位、移动以及对膜纸的封切等功能;
为完成上述要求,电气控制系统应具备如下功能:
1、控制方式分为自动、手动两种工作方式。在手动工作方式下,不但可以方便设定设备工作参数,还可以手动单独操作设备各运动机构,以测试各功能、动作是否正常并方便设备维修;在自动方式下,可在无人干预的情况下,自动完成各动作功能,并能在无膜或断膜以及物体排列不对的情况下自动停机并给出相应报警信息。
2、具备人机对话功能,能够设定和显示设备工作参数并可随时修正,以适应不同包装物品、不同排列组合的要求。
3、上下供膜速度一致并连续可调,膜纸封切温度控制在±2℃以内。
4、工作循环速度为20-30次/分,为此要求各控制器件具有很高的稳定性和可靠性。
三、硬件配置
根据上述控制要求,综合考虑机器的先进性、可靠性和成本等因素,决定采用SIEMENS公司生产的S7-200 CPU226 CN PLC 和K-TP178Micro人机接口界面作为该设备控制系统的核心控制器件,具体硬件配置框图如图1所示。
图1:硬件结构
人机界面K-TP178Micro是SIEMENS公司新推出的S7-200 PLC专用触摸屏;与S7-200硬件功能配合使用,可十分方便地实现数据配方、归档和PID自整定功能,它专为中国用户量身订做,触摸屏与按键组合操作合二为一,操作十分快捷;快速的系统启动时间和操作响应时间,1024K的存储空间,带按键音,5种在线语言切换,可满足多种应用需要。
PLC选用SIEMENS公司于2005年12月推出的S7-200 CN 系列的CPU226 CN 型PLC,外加一个带四通道模拟量输入、一通道模拟量输出的EM235CN扩展模块。S7-200 CN继承了S7-200的优良品质和卓越性能,适用范围可覆盖从替代继电器的简单控制到复杂的自动化控制,应用领域极为广泛,覆盖所有与自动监测,自动化控制有关的工业及民用领域,具有极高的性价比。CPU226 CN是控制系统的核心部件,它将通过DI收集到的设备当前运行状态和HMI的设定信息,按照编制好的程序功能,通过DO驱动设备执行机构完成相应动作,其工作的稳定性、可靠性直接影响着设备的效率和性能。左、右两路封切温度信号经温度变送器转换为0-20mA信号,送到扩展模块EM235的模拟量输入端,经A/D转换为数字信号并与HMI温度设定信号比较,通过PLC内部PID功能控制加热元件的通断,实际应用效果可控制在±2℃以内。通过人机界面设定的上下供膜速度信号,经PLC数字运算,再经D/A转换,转换成0-10V的信号,送到两台SINMCS G110 0.37KW变频器模拟量输入端,控制上下供膜速度并在0-20米/分钟之间连续可调。
S7-200 CPU226 CN自身带有两路PPI通讯端口,可通过普通的两芯屏蔽双绞电缆进行连网,通讯速度高达187.5Kbit/s,可同时连接多至31台S7-200 CN系列PLC、编程器或人机界面(HMI),是一种连接十分简单、实用的通讯网络。
需要特别提出的是:SIEMENS变频器对电机的技术参数要求十分严格,在电机运行前,必须根据电机的参数正确设定变频器技术参数(P0304-P0311)并进行快速调试,否则可能影响电机运行的稳定性,甚至损坏元器件。
四、编程
程序的编制主要包括人机界面应用程序和PLC控制程序两个部分。
1、人机界面应用程序
人机界面是用户设定设备运行参数的关键,主要包括工作画面、参数设定画面、手动画面、设备运行状态和帮助信息等五个部分。工作画面是操作设备常用的画面,包括各种主令开关、当前封切温度、上下供膜速度等设备运行参数和状态;参数设定画面主要用于设定设备的运行参数;手动画面主要用来在手动状态下手动设备各运动部件,测试其运动功能;帮助信息是帮助用户如何使用设备以及当设备出现故障时如何处理。
2、PLC控制程序
在熟悉上述生产工艺和控制要求的基础上,由于本机没有特别的控制要求,PLC控制程序的编制是很简单、快捷的。控制程序主要包括紧急停止及安全控制、手动控制、自动控制、互锁控制、PID温度控制、故障及报警信息显示等六个部分,这六个控制程序既相互独立,又相互协调、配合,共同完成控制任务,实现控制要求。
五、结束语
实践证明,上述控制方案运用于HW-800H型集合包装机,控制性能优良,运行稳定可靠,人机界面友好,设备工艺参数修改方便、快捷,并已批量生产,值得在其它中、小型控制场合推广和应用。