浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7214-1BD23-0XB8库存优势

西门子模块6ES7214-1BD23-0XB8库存优势

西门子S7-1200与博途以及组态王的通讯设置

4、使用ping 命令,保证能ping 到PLC 站。 在开始菜单“搜索程序和文件"中输入 cmd 指令,进入DOS命令窗口 在DOS 界面中输入命令:ping 192.168.0.110 然后回车。注意:在ping 和地址之间有一个空格,如下图所示。

ping

观察DOS 界面中的ping 指令返回值。如包括time=1ms 或time<1ms 及TTL 等于某个数值, 且Lost=0,即ping 指令返回值正常,表明以太网连接正常。如下图所示。

如果连接不正常,可能如下图所示,ping 指令返回值显示timed out 或Lost 值不为0, 表示本机IP 地址和目标IP 地址连接不通,建议检查一下连接线缆及两台计算机的IP 地址设置。

(3)PG/PC 接口配置,通信测试,以检查运行组态王的计算机是否和PLC正常通信 1.打开Set PG/PC Interface。 在操作系统中点击“Start"菜单,打开“Control Panel"选项,在控制面板中,选中“大图标"显示,即可找到Set PG/PC Interface,如图。双击打开

功率范围7.5kW至250kW。它按照要求设计,并使用内部功能互联(BiCo)技术,具有高度可靠性和灵活性。控制软件可以实现功能:多泵切换、手动/自动切换、旁路功能、断带及缺水检测、节能运行方式等。
主要特征:380V-480V±10%,三相,交流,7.5kW-250kW;风机和泵类变转矩负载;牢固的EMC(电磁兼容性)设计;控制信号的快速响应;控制功能:线性v/f控制,并带有增强电机动态响应和控制特性的磁通电流控制(FCC),多点v/f控制;内置PID控制器;快速电流限制,防止运行中不应有。
西门子变频器MicroMaster420西门子变频器MicroMaster420是全新一代模块化设计的多功能标准变频器。它友好的用户界面,让你的安装、操作和控制象玩一样灵活方便。全新的IGBT技术、强大的通讯能力、**的控制性能、和高可靠性都让控制变成一种乐趣。

西门子CPU模块6ES7511-1FK02-0AB0技术参数

主要特征:200V-240V±10%,单相/三相,交流,0.12kW-5.5kW;380V-480V±10%,三相,交流,0.37kW-11kW;模块化结构设计,具有多的灵活性;标准参数访问结构,操作方便。
控制功能:线性v/f控制,平方v/f控制,可编程多点设定v/f控制;磁通电流控制(FCC),可以改善动态响应特性;西门子的IGBT技术,数字微处理器控制;数字量输入3个,模拟量输入1个,模拟量输出1个,继电器输出1个;集成RS485通讯接口,可选PROFIBUS-DP通讯模块/Device-Net模板。
保护功能:过载能力为150%额定负载电流,持续时间60秒;过电压、欠电压保护;变频器过温保护;接地故障保护,短路保护;I2t电动机过热保护;采用PTC通过数字端接入的电机过热保护;采用PIN编号实现参数连锁;闭锁电机保护,防止失速保护。
西门子G120C紧凑型变频器SINAMICSG120C紧凑型变频器,在许多方面为同类变频器的设计树立了*。包括它紧凑的尺寸,便捷的快速调试,简单的面板操作,方便友好的维护以及丰富的集成功能都将成为新的标准。


SINAMICSG120C是专门为满足OEM用户对于高性价比和节省空间的要求而设计的变频器,同时它还具有操作简单和功能丰富的特点。这个系列的变频器与同类相比相同的功率具有更小的尺寸,并且它安装快速,调试简便,以及它友好的用户接线方式和简单的调试工具都使它与众不同。
集成众多功能:安全功能(STO,可通过端子或PROFIsafe激活),多种可选的通用的现场总线接口,以及用于参数拷贝的存储卡槽。SINAMICSG120C变频器包含三个不同的尺寸功率范围从0.55kW到18.5kW。
为了提高能效,变频器集成了矢量控制实现能量的优化利用并自动降低了磁通。该系列的变频器是全集成自动化的组成部分,并且可选PROFIBUS,ModbusRTU,CAN以及USS等通讯接口。操作控制和调试可以快速简单地采用PC机通过USB接口,或者采用BOP-2(基本操作面板)或IOP(智能操作面板)来实现。
[2]日常维护编辑操作人员必须熟悉西门子变频器的基本工作原理、功能特点,西门子变频器(图3)西门子变频器(图3)具有电工操作常识。在对变频器日常维护之前,必须保证设备总电源全部切断;并且在变频器显示*消失的3-30分钟(根据变频器的功率)后再进行


使 用opc Scout监 视S7-300/400的STRING类 型变量,但是在OPC Scout中 总是没有字符显示。

如 图1所 示,在plc的DB1中 定义了两个字符串S1和S2。

图 1

在OB1程 序中为字符串S2赋 值如图2。

图2

如 图3所 示,OPC Scout中 定义了两个Item, 分别监视DB1中 的两个字符串S1和S2, 结果个字符串可正常显示字符串内容,第二个字符串无字符显示。

图3

String数 据类型作为复杂数据类型无法在DB块 中直接监视,可通过变量表来监视但需要拆分为多个字节来监视和修改,如图4变 量表中监视两个字符串的部分字节。

图4

对 照图5所 示Sting数 据类型的结构来看,DB1.DBB0和DB1.DBB12分 别为字符串S1和S2的 大长度,DB1.DBB1和DB1.DBB13为 字符串S1和S2的 实际长度,从变量表监视结果可看到,S1的 实际长度为5个 字符,而S2的 实际长度为0, 所以在OPC Scout中 监视S2始 终都没有字符显示。

图5

解 决方法:

在 程序中增加为S2实 际长度字节赋值的指令。如将实际长度3通 过MOVE指 令传递给DB1.DBB13, 在OPC Scout中 能看到第二个字符串显示位“fal”。如 果将S1的 实际长度字节值修改为3, 在OPC Scout中 显示的字符串将是“abc” 而不是现在的“abcde”。

利用两个或多个常闭触点来保证线圈不会同时通电的功能成为“互锁”。三相异步电动机的正反转控制电路即为典型的互锁电路,如图5-4所示。其中KMl和KM2分别是控制正转运行和反转运行的交流接触器。


图5-4 三相异步电动机的正反转控制电路
如图5-5所示为采用plc控制三相异步电动机正反转的外部I/O接线图和梯形图。实现正反转控制功能的梯形图是由两个起保停的梯形图再加上两者之间的互锁触点构成。


图5-5 用PLC控制电动机正反转的I/O接线图和梯形图
应该注意的是虽然在梯形图中已经有了软继电器的互锁触点(X1与X0、Y1与Y0),但在I/O接线图的输出电路中还必须使用KM1、KM2的常闭触点进行硬件互锁。因为PLC软继电器互锁只相差一个扫描周期,而外部硬件接触器触点的断开时间往往大于一个扫描周期,来不及响应,且触点的断开时间一般较闭合时间长。例如Y0虽然断开,可能KM1的触点还未断开,在没有外部硬件互锁的情况下,KM2的触点可能接通,引起主电路短路,因此必须采用软硬件双重互锁。采用了双重互锁,同时也避免因接触器KM1或KM2的主触点熔焊引起电动机主电路短路。

在应用plc高速计数器时往往会碰到如下一系列问题,计数器与输入计数脉冲信号的脉冲电平不匹配。如旋转编码器、光栅尺数据输出是TTL电平,而PLC高速计数器为确保工业现场的高抗干扰性能,却要求接受的是0 - 24v传输脉冲信号、又有的编码器为了提高编码可靠性,提供A+、A-,B+、B-,Z+、Z- 对称反相的编码计数脉冲或者是提供A+、A-,B+、B-,Z+、Z- 对称反向的正弦矢量差分、差模信号,但PLC高速计数器要求接收的是单相计数脉冲。而使用者没有选择用到合适的转换接口而放弃了其中一相(编码器本因为要提高系统工业现场抗干扰能力,而提供的双相计数脉冲信号)进行计数。


  又如在应用旋转编码器、光栅尺的场合非单方向匀速运动,其运动速度是时快时慢、时动时静止、时正时反的不确定性、或者在运动速度非常低的场合,如果接口没有匹配处理好是非常容易发生计数误差的。还有脉冲数据传输距离稍长些,脉冲传输过程中会产生脉冲波形奇变。


  有许多应用场合虽然计数脉冲频率不高,而忽略了PLC高速脉冲计数器对计数脉冲的前后沿口是有速率要求(脉冲形成的上升、下降沿口响应速度要陡峭),尤其是在应用线数比较高的编码器在低速运行时,由于机械运动必然产生细微斗动或者编码器前级安有变速齿轮,就很容易会引起编码脉冲前后沿口上出现锯齿口。还有长期机械运动产生机械磨损,使间隙变大也会引起编码脉冲前后沿口上出现锯齿口。


  在工业现场的干扰是错综复杂的,由来自控制现场如电动机的启动停止、大电流接触器的切换、可控硅的调相干扰、电弧电脉冲、电磁波等等复杂的干扰群,那纵向和横向电磁干扰是罗列不完。


  问题终综合反映在计数脉冲上,产生了寄生毛刺信号或寄生干扰脉冲,寄生毛刺脉冲如果没有得到有效的遏止整形。所以必然会导致PLC高速计数器的计数精度不稳定、不可靠、产生累计误差、经常会碰到偶发性的计数出错等一系列问题。


  所以许多部件在实验室做模拟试验时是完好无误的,而一旦到了工业现场却出现种种不正常的现象。这往往是因为忽略了系统设计的整体概念,各个系统与系统之间的不匹配所产生的系统性干扰。它会直接影响到PLC控制精度,使得原本为了提高控制精度而设置的功能,却发挥不了本该提高精度的效果。即理论设计精度与实际得到的效果差距甚远。有时误认为PLC高速计数器质量有问题、编码器有故障、码盘线数还不够多。且没有找到问题的真迹源头在哪里而无从着手,也没有采取有效克服措施或者没有找到有效的克服干扰的方法。


  为此我们针对这些在国内电气系统、工业自动化控制系统普遍存在而又常见的有共性的技术问题,专门精心比照分析,研究了许多国外引进的大系统集成项目,自动化控制程度比较高的比较经典的控制系统时。发现有许多是常被我们设计师所忽略的细节,往往认为是“多余”的或者是认为可以“节省”开销的部件,似乎那些接口件去掉照样可以工作,有些部件当下去掉确实反映不出有无的变化和必要性。尤其是在当前市场竞争白日化,比价竞争为竞标的不明智压力下。常常是会在做设计时从成本角度考虑被“精简”掉了。从而往往会形成许多国产化系统先天不足后天失调,在现场系统调试时常常卡口。在现场采取应急措施,此时所采取措施常常是不十分完善的治标不治本小仓贴。系统不耐用也就自然的了,反倒使工程日后无形的维护费用变大,似乎和前期项目投入是互不关联的两家之的事。其实质原因问题还是在自身,非常值得我们反思。


  我们对那些可“精简多余”接口部件进行分析研究后又在工业现场实地试验后方知,它在构成系统整体集合时存在的必要性,选好对应匹配的接口,是对系统长期稳定运行的可靠保障。尤其是**度要求比较高的机械电气合一的数控项目中尤为重要。


展开全文
优质商家推荐 拨打电话