浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子模块6ES7331-7PF01-0AB0性能参数

西门子模块6ES7331-7PF01-0AB0性能参数

主要检查以下两部分:
① 温控器侧:
a. 通讯接线是否正确,通讯线建议使用屏蔽双绞线;
具体接线参考下图
RS232接线:        


b.检查调整菜单中通讯写是否有设置为On;
c.终端电阻是不是使用,一般建议使用120欧姆;
d.波特率、数据位、停止位、通讯协议、单元号是否设置正确(其中MODBUS-RTU数据位和停止位固定为8、1)。
② PLC侧:
a.PLC或者适配器的DIP开关是否设置正确;
b. 串口通讯格式(波特率、数据位、停止位)设置是否和温控器一样;
c.程序是否编辑正确(主要是指令和通讯格式);
d. PLC的终端电阻是否设置成ON(SCB、SCU、通讯适配);
e.发送协议之后是否有响应代码
有响应代码,对照温控器响应代码表格检查错误
无响应代码,检查如上所有设置和接线。


可编程控制器(PLC)是一种数字运算与操作的控制装置。PLC作为传统继电器的替代产品,广泛应用于工业控制的各个领域。由于PLC可以用软件来改变控制过程,并有体积小,组装灵活,编程简单,抗干扰能力强及可靠性高等特点,特别适用于恶劣环境下运行。

当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,例如我厂二催化的自动吹灰系统。PLC可提供控制信号和指令的通断信号。一个PLC系统由三部分组成,即中央处理单元、输入输出模块和编程单元。本文介绍变频器和PLC进行配合时所需注意的事项。

1.开关指令信号的输入

变频器的输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作的开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性的元器件(如晶体管)与PLC)相连,得到运行状态指令,如图1所示。

在使用继电器接点时,常常因为接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身的电压、电流容量等因素,保证系统的可靠性。

在设计变频器的输入信号电路时还应该注意,当输入信号电路连接不当时有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生的浪涌电流带来的噪音有可能引起变频器的误动作,应尽量避免。图2与图3给出了正确与错误的接线例子。

当输入开关信号进入变频器时,有时会发生外部电源和变频器控制电源(DC24V)之间的串扰。正确的连接是利用PLC电源,将外部晶体管的集电极经过二极管接到PLC。如图4所示。

2.数值信号的输入

 

 


图1 运行信号的连接方式
 

 

 


图2 变频器输入信号接入方式
 

 

 


图3 输入信号的错误接法
 

 

 


输入信号防干扰的接法
 

变频器中也存在一些数值型(如频率、电压等)指令信号的输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上的键盘操作和串行接口来给定;模拟输入则通过接线端子由外部给定,通常通过0~10V/5V的电压信号或0/4~20mA的电流信号输入。由于接口电路因输入信号而异,因此必须根据变频器的输入阻抗选择PLC的输出模块。图5为PLC与变频器之间的信号连接图。

当变频器和PLC的电压信号范围不同时,如变频器的输入信号为0~10V,而PLC的输出电压信号范围为0~5V时;或PLC的一侧的输出信号电压范围为0~10V而变频器的输入电压信号范围为0~5V时,由于变频器和晶体管的允许电压、电流等因素的限制,需用串联的方式接入限流电阻及分压方式,以保证进行开闭时不超过PLC和变频器相应的容量。此外,在连线时还应注意将布线分开,保证主电路一侧的噪音不传到控制电路。

通常变频器也通过接线端子向外部输出相应的监测模拟信号。电信号的范围通常为0~10V/5V及0/4~20mA电流信号。无论哪种情况,都应注意:PLC一侧的输入阻抗的大小要保证电路中电压和电流不超过电路的允许值,以保证系统的可靠性和减少误差。另外,由于这些监测系统的组成互不相同,有不清楚的地方应向厂家咨询。

另外,在使用PLC进行顺序控制时,由于CPU进行数据处理需要时间,存在一定的时间延迟,故在较**的控制时应予以考虑。

因为变频器在运行中会产生较强的电磁干扰,为保证PLC不因为变频器主电路断路器及开关器件等产生的噪音而出现故障,将变频器与PLC相连接时应该注意以下几点:

(1)对PLC本身应按规定的接线标准和接地条件进行接地,而且应注意避免和变频器使用共同的接地线,且在接地时使二者尽可能分开。

(2)当电源条件不太好时,应在PLC的电源模块及输入/输出模块的电源线上接入噪音滤波器和降低噪音用的变压器等,另外,若有必要,在变频器一侧也应采取相应的措施。

(3)当把变频器和PLC安装于同一操作柜中时,应尽可能使与变频器有关的电线和与PLC有关的电线分开。

(4)通过使用屏蔽线和双绞线达到**噪音干扰的水平。

3 结束语

PLC和变频器连接应用时,由于二者涉及到用弱电控制强电,因此,应该注意连接时出现的干扰,避免由于干扰造成变频器的误动作,或者由于连接不当导致PLC或变频器的损坏。

PLC在数控机床上起着连接NC与机床的桥梁作用,一方面,它不仅接受NC的控制指令,还要根据机床侧的控制信号,在内部顺序程序的控制下,给机床侧发出控制指令,控制电磁阀、继电器、指示灯,并将状态信号发送到NC;另一方面,在对大量开关信号处理过程中,任何一个信号不到位,任何一个执行元件不动作,都会使机床出现故障。在数控机床的维修过程中,这类故障占有比较大的比例。因此掌握用PLC查找故障的方法很重要。
1 与PLC有关的故障特点
(1)大多数有关PLC的故障是外围接口信号故障,所以在维修时,只要PLC有些部分控制的动作正常,都不应该怀疑PLC程序。如果通过诊断确认运算程序有输出,而PLC的物理接口没有输出,则为硬件接口电路故障。
(2)硬件故障多于软件故障,例如当程序执行M07(冷却液开)时,机床无此动作,大多是由外部信号不满足,或执行元件故障,而不是CNC与PLC接口信号的故障。
2 与PLC有关故障检测的思路和方法
2.1 根据故障号诊断故障 数控机床的PLC程序属于机床厂家的二次开发,即根据机床的功能和特点,编制相应的动作顺序以及报警文本,对过程进行监控。当出现异常情况,会发出相应报警。在维修过程中,要充分利用这些信息。
例1:某数控机床的换刀系统在换刀指令时不动作,机械臂停留在行程中间位置上,CRT显示报警号。查手册得知该报警号表示:换刀系统机械臂检测开关信号为“0”即“刀库换刀位置错误”。 根据报警内容,可诊断故障发生在换刀装置和刀库两部分,由于相应的位置检测开关无信号送至PLC的输入口。从而导致机床中断换刀。造成开关无信号的原因有两个:一是由于液压或机械上的原因造成动作不到位而使开关得不到感应;二是接近开关失灵。首先检查刀库中的接近开关,用一薄金属片接近感应开关,以排除接近开关失灵的可能性。通过检查发现开关正常。因机械臂停留在中间位置,所以两个信号都为“0”。
机械装置检查:“臂缩回”的动作是由电磁阀YV21控制的,手动该电磁阀,把机械臂退回至“臂缩回”位置,机械恢复正常。这说明手控电磁阀能使换刀位置定位,从而排除了液压或机械上的阻滞造成换刀系统不到位的可能性。
由以上分析可知,PLC的输入信号正常,输出动作无误,问题在操作不当或PLC设置不当。《操作手册》中要求:连续运行中,两次换刀间隔时间不得小于30s。经过操作观察,两次换刀时间间隔小于PLC规定的要求,从而造成PLC程序执行错误引起报警。修改了相应的程序后,故障排除
。 2.2 根据动作顺序诊断故障
数控机床上刀具及托盘等装置的自动交换动作都是按照一定的顺序来完成的,因此,观察机械装置的运动过程,比较正常和故障时的情况,就可发现疑点,诊断出故障的原因。
例2:某立式加工中心自动换刀故障。
故障现象:换刀臂平移到位后,无拔刀动作。
自动换刀控制如图1所示。ATC的动作起始状态是:主轴保持要交换的旧刀,换刀臂在B位置,换刀臂在上部位置,刀库已将要交换的新刀具定位。自动换刀的顺序为:换刀臂左移(B→A)→换刀臂下降(从刀库拔刀)→换刀臂右移(A→B)→换刀臂上升→换刀臂右移(B→C,抓住主轴中刀具,)→主轴液压缸下降(松刀)→换刀臂下降(从主轴拔刀)→换刀臂旋转1800(两刀具交换位置)→换刀臂上升(装刀)→主轴液压缸上升(抓刀)→换刀臂左移(C→B)→刀库转动(找出旧刀具位置)→换刀臂左移(B→A返回旧刀具给刀库)→换刀臂右移(A→B)→刀库转动(找下一把刀)。 
图1 自动换刀控制示意图

换刀臂平移至C位置时,无拔刀动作,分析原因,有几种可能:
(1)SQ2无信号,所以未输出松刀电磁阀YV2的电压,主轴仍处于抓刀状态,换刀臂不能下移。
(2)松刀接近开关SQ4无信号,则换刀臂升降电磁阀YVl状态不变,换刀臂不下降。
(3)电磁阀有故障,给予信号也不动作。逐步检查,发现SQ4未发出信号。进一步对SQ4进行检查,发现感应间隙过大,导致接近开关无信号输出,产生动作障碍。将感应间隙δ调至1 111111,故障消除。
2.3 根据控制对象的工作原理诊断故障
数控机床的PLC程序是按照控制对象的控制原理来设计的,通过对控制对象的工作原理的分析,结合PLC的I/O状态来进行检查。

例3:数控车床工件夹紧故障。
故障现象:该车床配备FANUC一0T系统,当脚踏尾座开关使套筒顶进工件时,系统产生报警。尾架套简的示意图和PLC输入开关分别如图2和图3所示。
故障诊断:在系统诊断状态下,调出PLC输入信号,发现脚踏开关输入X04.2为“1”,尾座套筒转换开关X17.3为“1”,润滑油液面开关X17.6为“1”。调出PLC输出信号,当脚踏向前开关时,输出Y49.0为“1”,同时电磁阀也得电。这说明系统PLC输入输出状态均正常。因此,尾座套筒液压系统有问题。
析图2:当电磁阀YV4.1得电后,液压油经溢流阀、**控制阀和单向阀进入尾座套筒液压缸,使其向前顶紧工件。松开脚踏开关后,电磁换向阀处于中间位置,油路停止供油,由于单向阀的作用,尾座套筒向前时的油压得到保持。该油压使压力继电器常开触点接通,在系统PLC输入信号中X00.2为“1”,但检查系统PLC输入信号X00.2为“0”,说明压力继电器触点信号有问题。经进一步检查发现其触点开关损坏,从而造成PLC输入信号为“0”,系统认为尾座套筒未顶紧而产生报警。更换一新的压力继电器后,故障排除。
图2 尾建控制示意图 

图3 尾架套筒的PLC输入开关
2.4 根据PLC的∥o状态诊断故障
数控机床中,输入输出信号的传递一般都要通过PLC接口来实现,因此,许多故障都会在PLC的I/0接口这个通道反映出来。数控机床的这个特点为故障诊断提供了方便,不用万用表就可以知道信号的状态,但要熟悉有关控制对象的正常状态和故障状态。
2.5 通过梯形图诊断故障
根据PLC的梯形图来分析和诊断故障是解决数控机床外围故障的基本方法。用这种方法诊断机床故障,首先应搞清机床的工作原理、动作顺序和联锁关系,然后利用系统的自诊断功能或通过机外编程器,根据PLC梯形图查看相关的输入输出及标志位的状态,从而确定故障原因。
例4:配备SIN810数控系统的加工中心,出现分度工作台不分度的故障且无报警。
根据工作原理,分度的齿条和齿轮啮合,这个动作是靠液压装置来完成的,由PLC输出Q1.4控制电磁阀YVl4来执行。PLC相关部分的梯形图如图4。
通过数控系统的DIAGNOSIS中的“STATUS PLC”软键,实时查看Q1.4的状态,发现其状态为“0”;由PLC梯形图查看F123.0也为“0”,按梯形图逐个检查,发现F105.2为“0”,导致F123.0为“0”;根据梯形图查看STATUS PLC中的输入信号,发现IlO.2为“0”从而导致F105.2为“0”。19.3、19.4、110.2、IlO.3为4个接近开关的检测信号,以检测齿条和齿轮是否啮合。分度时,这4个接近开关都应有信号,即都应闭合,现发现110.2未闭合。处理方法:检查机械部分确认机械是否到位;检查接近开关是否损坏。根据这个线索继续查看,后发现反映二、三工位分度头起始位置检测开关19.4、110.2动作不同步,导致了工作台不旋转。进一步确认为三工位分度头产生机械错位。调整机械装置,使其与二工位同步后,故障消除。


图4 故障机床PLc相关部分梯形图

2.6 动态跟踪梯形图诊断故障
有些数控系统带有梯形图监控功能,调出梯形图画面,可以看到输入输出点的状态。梯形图执行的动态过程,有的需要机外编程器,在线监控程序的运行。当有些PLC发生故障时,因过程变化快,查看L/O及标志无法跟踪。此时需要通过PLC动态跟踪,实时观察I/O及标志位状态的瞬间变化,根据PLC的动作原理做出诊断。
3 结语 通过以上思路和实例,要做好用PLC对数控机床故障检测须注意以下几点: (1)了解机床各组成部分检测开关的安装位置,如加工中心的刀库、机械手和回转工作台,数控车床的旋转刀架和尾架,机床的气、液压系统中的限位开关、接近开关和压力开关等,弄清检测开关作为PLC输入信号的标志。 (2)了解执行机构的动作顺序,如液压缸、气缸的电磁换向阀等,弄清对应的PLC输出信号标志。 (3)了解各种条件标志,如起动、停止、限位、夹紧和放松等标志信号。 (4)借助必要的诊断功能,必要时用编程器跟踪梯形图的动态变化,搞清故障原因,根据机床的工作原理做出诊断。


展开全文
优质商家推荐 拨打电话