浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子CPU模块6ES7518-4AP00-0AB0技术参数

西门子CPU模块6ES7518-4AP00-0AB0技术参数

    0 引言

    由于电力电子技术迅速发展,使得高压变频器(HighVoltageVariableFrequencyDrives,简称HVVFD)在石油化工、电力、冶金等行业得到了大规模的使用,对高压电机设备的节能、调速发挥了重大作用。同时,这些使用场合又对高压变频器的可靠性、稳定性提出了更高的要求,本文旨在从高压变频器的控制器部分分析电磁干扰(ElectromagneticInterference,简称EMI)的影响与解决方法。

    高压变频器是融合了微控制器、大功率器件、磁性材料、传感器等强、弱电部件为一体的自动化系统,其控制系统一般由控制箱、PLC、触摸屏及相关控制元器件组成,有的还有上位机及DSC系统,因此,电磁干扰问题也日趋复杂,EMI可以使传动系统的核心———计算机控制系统的信号错乱,同时能够破坏或降低其他,电子设备的工作性能,从而导致严重后果。

    1 控制系统结构和产生电磁干扰的环节

    主控制器的功能方框图如图1所示,结构为单元组合式,其核心为双DSP的CPU单元,通过总线与接口板和相控A、B、C板互通信息。从接口子模块DI、AI可接受操作命令、给定信号、电机电流与电压等。CPU板根据操作命令、给定信号及其他输入信号,计算出控制信息及状态信息。相控A、B、C板接受来自CPU板的控制信息,产生PWM控制信号,经电/光转换器,向功率单元发送控制光信号。来自功率单元的应答信号在相控A、B、C板中转换成电信号,予处理后送CPU板处理。状态信息可通过接口板和接口子模板送出。


点击此处查看全部新闻图片

    电磁干扰一般包含三个环节,即电磁干扰源、电磁干扰传递途径(传导、辐射、耦合)及接受电磁干扰的响应者。三个环节相当复杂,不同的场合有不同的表现。根据电磁感应、集肤效应、电磁振荡与电磁波传播等基本物理规律可知,电磁物理量随时间变化越快,越容易感生电磁干扰;频率越高越容易产生辐射;电磁场强度与距离平方成反比;一些灵敏度高的未屏蔽电路容易产生耦合等。

    高压变频控制系统电磁干扰按传播形式分为传导型干扰和辐射型干扰两大类。传导干扰指电磁干扰通过电源线路、接地线和信号线传播到达对象所造成的干扰;辐射干扰指通过空间辐射传播到敏感器件的干扰。控制系统中信号传输线和其他电气设备的电容性耦合、电感性耦合都是重要的干扰源。

    2 电磁兼容性分析

    控制系统经由多个单元组合而成,不可能完全避免电磁干扰,因此必须在控制器敏感设备上采取抗干扰措施。屏蔽、滤波、合理接地、合理布局等抑制干扰的措施都是很有效的。根据电磁干扰的三要素可采取以下控制方法,如屏蔽、接地、搭接、合理布线等,此外还可以采取回避和疏导的技术处理,如空间方位分离、滤波、吸收和旁路等,这些都是有经验的工程技术人员经常采用的控制方法。解决电磁干扰问题,应该在整个电气系统设计、布线、安装、调试时同时进行,而不能仅仅在调试阶段才去着手处理。

    2.1屏蔽

    屏蔽一般分为两种类型,一类是静电屏蔽,主要用于防止静电场和恒定磁场的影响,静电屏蔽应具有完善的屏蔽体和良好的接地,另一类是电磁屏蔽,主要用于防止交变电场、交变磁场以及交变电磁场的影响。电磁屏蔽不但要求有良好的接地,而且要求屏蔽体具有良好的导电连续性,对屏蔽体的导电性要求比静电屏蔽高得多,使用屏蔽信号电缆的抗电磁干扰原理如图2所示。


点击此处查看全部新闻图片

    屏蔽电缆的屏蔽层如果接地不好,则起不到屏蔽干扰源的作用,反而会成为干扰源(电缆的屏蔽层会吸收外在的电磁干扰)。电缆的屏蔽层要单端接到接地端子PE上。

    2.2接地

    接地看似简单,却是很难掌握和处理的问题,因为至今尚未形成系统的理论或模型,实际上,在一个场合运行效果很好的方案拿到另一场合就不一定适用。接地设计在很大程度上依赖工程技术人员对“接地”概念的理解和实际工作经验。

    接地的方法很多,具体使用取决于系统的结构和功能。常用的方法有3种。

    1)单点接地为许多在一起的电路提供公共电位参考点,这样信号就可以在不同的电路之间传输。该点常常以大地为参考。由于只存在一个参考点,因此可以相信没有地回路存在,因而也就没有干扰问题。

    2)多点接地设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。这种接地结构能够提供较低的接地阻抗,因为多点接地时,每条地线可以很短,而且多根导线并联能够降低接地导体的总电感。在高频电路中必须使用多点接地,并且要求每根接地线的长度小于信号波长的1/200。

    3)混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用混合接地。

    根据接地要求,接地又分以下几种。

    1)安全接地使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。

    2)电磁兼容接地出于电磁兼容设计而要求的接地,包括:

    (1)屏蔽接地为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。

    (2)滤波器接地滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。

    (3)噪声和干扰抑制对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“低阻抗”通道。

    (4)电路参考电路之间信号要正确传输,必须有一个公共电位参考点,该公共电位参考点就是地,因此所有互相连接的电路必须接地。

    2.3滤波

    滤波是压缩干扰频谱的一种有效方法,当干扰频谱不同于有用信号的频带时,可以用滤波器将干扰滤除。因此,恰当地选择和正确地使用滤波器对抑制传导干扰十分重要。


点击此处查看全部新闻图片

    滤波将信号频谱分为有用频率分量和干扰分量两段,剔除干扰部分。滤波器一般分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器。在主电路交流侧的滤波器主要用于滤出电网的电磁干扰,图3所示为电网上常见的尖峰干扰。在直流回路的滤波器主要减少线路的电感效应引起的干扰。

    使用电源滤波器,应尽量靠近电源入口处安装,并使滤波器的输人/输出端之间屏蔽隔离,避免电磁干扰从输入端直接耦合到滤波器的输出端。此外,滤波器的接地点应尽量靠近设备的接地点。图4所示为电源滤波器电原理图。

    2.4隔离

    隔离是消除因地环路而引起的公共阻抗干扰而采取的有效措施。一般有隔离变压器、光电耦合隔离器、光纤等。光电隔离具有单方向传递信号且频带宽,抗干扰能力强,绝缘电压高,体积小,成本低,耐冲击等优点,在控制系统中应用十分广泛。此外,差分电路和平衡电路均可减少地环流,起到抑制干扰的作用。

因此,选择变频器供电电源时,好选择短路阻抗大的变压器。

    2)安装滤波器在变频器前加装LC型无源滤波器,滤掉高次谐波,通常滤掉5次和7次谐波。

    3)安装电抗器在变频器前侧安装线路电抗器,可抑制电源侧过电压。

    4)设置有源滤波器有源滤波是自动产生一个与谐波电流的幅值相同且相位正好相反的电流,从而可以有效地吸收谐波电流。

    2.2对噪声与振动问题的处理

    1)当变频器输出中的低次谐波分量与转子固有机械频率发生谐振时,则噪声增大;当变频器输出中的高次谐波分量与铁芯、机壳、轴承架等,在各自固有频率附近处发生谐振时,则噪声增大。

    变频器传动电动机产生的噪声特别是刺耳的噪声与PWM控制的开关频率有关,尤其在低频区更为显著。要解决这一问题,一般在变频器输出侧连接交流电抗器。如果电磁转矩有余量,可将u/f设定小些,以平抑和降低噪声。

    2)变频器工作时,输出波形中的高次谐波引起的磁场对许多机械部件产生电磁策动力,策动力的频率与这些机械部件的固有频率接近或重合时将发生谐振。对振动影响大的主要是较低次的谐波分量,在PAM方式和方波PWM方式时有较大的影响。但采用SPWM方式时,低次的谐波分量小,影响亦变小。

    减轻或消除振动的方法是在变频器输出侧接人交流电抗器以吸收变频器输出电流中的高次谐波电流成分。采用PAM方式或方波PWM方式的变频器时,可改用SPWM方式变频器,以减小脉动转矩,就可以减弱或消除振动,防止机械部分因振动而受损。

    2.3对发热问题的处理

    通用变频器的运行环境温度一般要求在-l0℃~+50℃。为保证变频器可靠地工作,并延长变频器的使用寿命,必须对变频器进行散热。冬天可以利用变频器的内装风扇将变频器箱体内部的热量带走;夏天温度本身就有40℃,利用变频器的内装风扇带走的内部热量只能使室内和变频器箱体温度升高,此时好的办法是利用窗户或在机配电室紧邻变频器箱体的墙壁上下方均匀适当地打几个φ500mm的洞,同时确保控制柜内变频器周围留有一定的空间,保持良好的自然通风。这样还不行的话可以打开风扇,或在洞口加装排气扇和风道,将变频器产生的热量强制抽出室外。后可考虑采用空调对安装变频器的空间环境进行强制降温。

  输入的高压电源接至绝缘的移相变压器的一次绕组。变压器有9个绝缘的二次绕组,这些二次绕组分别与功率模块连接,功率模块对电源电压进行整流和滤波,以形成直流(DC)高电压。利用移相的正弦脉宽调制(SPWM)技术,将高的直流电压逆变为所需频率的交流(AC)电压,绝缘的成组AC电压输出串联连接一起,则形成Y接三相输出电源,如图2所示。对于典型的6kV变频器,每相将由3个1275V功率模块串联,形成3825V总的相电压输出。而线电压约为6600V。每一功率模块携带满负荷电流,但它们仅提供1/9的输出功率和1/3的相电压。在这一设计中,串联的功率模块数和用于功率模块中每一电力半导体器件的分级电压,决定着该变频器的输出电压。安装的电力半导体器件的电流定额则为变频器的大输出电流。功率模块电路如图3所示。    


点击此处查看全部新闻图片

    在高电压应用领域使用了多级串联的电力半导体器件,为避免关系到多级串联的开关定时故障,变频器采用了高电压大功率的串联式功率模块设计。

    在此实例中,利用了300VHV-IGBT的功率模块,因为所用的功率模块数量更少,使成本大幅下降。而且,含有较少的电力半导体器件的系统工作更可靠。

    移相的多级串联SPWM设计的实现,满足了对输入和输出谐波含量的工业要求。

    2 多绕组移相输入设计

    带3个Delta(D)连接和6个延边Delta连接的二次绕组的三相移相、绝缘变压器用作输入变压器,旨在将输入电网的谐波减到小。这9个二次绕组之中,3个绕组的移相为+20°;3个绕组的移相为0°;还有3个绕组移相为-20°。如图4所示。

    每个三相二次绕组电源分别接到功率模块。该功率模块通过三相桥整流将交流电压变换为直流电压,DC电压的波形是对称的,且每隔π/3(60°)的电角度重复,因而具有6个台阶波形的特性。

    当把输入电源移相为+20°、0°和-20°的每一组3个功率模块(共3组)串联在一起时,组合的串联电压A将具有18个台阶波形的特性,波形是对称的,且每π/9(20°)角重复。18阶的电压波形只有(18n±1)次的谐波(n为正整数,也即谐波次数为17、19、35、37等)。由于这些谐波的次数高,故输入电流波形接近于正弦波,总的谐波电流失真度(THD)低于3%,变频器勿需任何笨重、昂贵的低通滤波器(LPF)。

    功率模块与带储能电容的三相二极管的桥式整流器结合,可提供较好的功率因数和较少的谐波失真。因电容器能供给电动机所需的无功功率,功率因数可达到0.96甚至更高,没有必要装设附加的功率因数补偿。

    由于二极管整流器无法控制电角度,因开关切换操作或闪电导致浪涌(冲击)电压,将经过变压器穿通变频器。如功率模块在二极管整流器后接上大的电容器,则任何通过二极管的浪涌电流,将被电容器吸收并滤波,因而变频器是安全的,能经受住这样的冲击。

    3 移相SPWM输出技术


点击此处查看全部新闻图片

    变频器在其功率模块中利用了多重移相、多级串联的SPWM技术,一个标准的功率模块将产生幅值和相位相同的同样标准的基本输出。3个功率模块形成一组,每组功率模块的载波信号按2π/3(120°)角交错移相(相位相互错开120°)。

    3个串联的功率模块将组合为多重移相、多级串联SPWM的电压输出,其中含有关系到谐波的载波频率(棕c),关系到边带(Sideband)的调制频率(棕)。由于载波频率棕c相对比较高,在输出电压中这些谐波藉电机额定的漏电感滤波,故输出电压实际会接近正弦波形,如图5所示。

    按照这一设计,输出电压波形具有的谐波含量则低于2.33%。由于谐波含量低,谐波对电动机感生的热量,引发的噪音和转矩脉动,均将大幅度减小。

    为了降低开关损耗,功率模块采用了低的开关频率。因而,没有必要附加浪涌吸收电路,变频器的频率大为改善。

    反电动势(CEMF)是由同步旋转的气隙磁通波产生的。当输出电缆长度超过临界值时,由于藉反射的CEMF引起的过电压而产生电压波形的脉动,可能损坏电动机的绝缘。Diamond-HV高压变频器的输出电压变化速率(du/dt)低,电压台阶的变化只有总的相电压台阶变化的1/3。这一总的相电压阶跃值是由多重移相SPWM技术所期望达到的值。因此,绝缘损坏的风险就大大降低了。

    4 通信和旁路技术

    主要控制系统与功率模块的通信是通过光(电)缆,低压部分和高压部分是完全绝缘的。所有功率模块的外壳均接地,因此可减小电磁干扰(EMI),确保系统的安全可靠。功率模块连接简单,仅带3个输入、2个输出的高压连接和4个光缆连接。

    当装有备用功率模块时,控制器可配置成在故障时将备用的功率模块取代故障的功率模块。

    控制功能中还可以将负荷电源切换到直接输入电源,以便维修时使变频器旁路而勿需中断工作。

    5 控制器和接口

    控制器模块是对变频器的系统控制。它操作控制所有的通信,包括通过光缆与功率模块的信号接口。在控制器模块内部,它与可编程逻辑控制器(PLC)结合,以增加系统的灵活性。PLC不仅处理逻辑信号的开关切换和操控,而且还配合协调现场的各种操作信号和状态信号。

    其它变频器制造商使用了特殊设计的专用计算机或专门的工控机用于控制和通信。因为计算机和控制器硬件及软件不断在升级,因此更新换代时必须进行相应的调整,这就降低了变频系统的灵活性和可靠性。

    可编程(序)的操作显示终端及触摸屏的输入显示单元,均被用于人/机操作接口,显示器将显示用于变频器和电机的全部参数。为了简易方便和可靠地使用,这一输入显示单元能用中文和英文编成程序。该变频器对大范围的监视及网络控制提供了标准的工业接口。

    控制器模块为确保高压变频器的工作可靠性,采用了超大规模集成电路。移相的SPWM技术保证在所有频率范围内,电机的运行是佳的。

    6 应用领域与节能效果

    Diamond-HV高压变频器操作简单,具有良好的控制性能。它广泛应用于诸如电力、石油化工、冶金、水泥和供水等各类工业领域。市场应用包括任何大功率高压变频系统,配电控制系统,电气设备紧急保护,电气谐波探测以及遥控检测和监视系统等。

    例如北京燕山石油精炼集团中华Beiwu水厂安装了Diamond-HV高压变频器后,统计安装前每天的耗电量为14000kW·h,安装后每天的平均耗电则为9000kW·h,每天节约5000kW·h,这就是说,能量利用的改善将近36%。按每kW·h低0.6元计算,每年将节约109.5万元。

    通过上面计算可知,变频器的成本在半年左右的时间内就能回收,而且安装变频器以后电机经常可处于小容量运转。因此,利用这一变频器系统,与原来的系统比较,节约的能量是巨大的。

    随着环保要求的日益提高,以及为满足我们随时增加的用电需求,会导致矿物石化燃料利用与成本的日益增加,因此进行变频改造势在必行。

    7 结语

    Diamond-HV移相串联式高压变频器设计新颖,结构紧凑。它使用的零部件少,确保了工作的可靠性。它能提供一平衡的负荷并具有良好的线性度;变频器操作简单,控制性能优良。移相变压器和移相SPWM的利用,确保了输入/输出谐波含量低以及输出电压变化率du/dt小,突出的特点是节能,且能很快收回成本。

    作者简介:

    邓隐北(1937-),男,教授级高工,主要从事教学及各种类型电机的研发设计工作。曾参加多项国家重大科研项目并获奖,1993年3月被聘为河南省科委高新技术专家、机电评审组副组长。发表论文80余篇,翻译外国科技论文及实用技术达700余篇。


展开全文
优质商家推荐 拨打电话