浔之漫智控技术-西门子PLC代理商
西门子PLC模块 , 变频器 , 触摸屏 , 交换机
西门子6ES7517-3TP00-0AB0技术参数

西门子6ES7517-3TP00-0AB0技术参数

引言

金属丝材是基本常用的金属深加工制品。生产金属丝材的金属拉拔机械简称拉丝机。随着国家对不可再生资源的日益关注,提倡节约,在整个电线电缆行业,越来越多的厂家开始尝试开发新型的生产设备,如铜包铝设备,由此延伸出来的三联拉等高端设备的潜在市场显得非常巨大,张家港维达机械正是看到了这样的商机,因此投入人力、物力开始研发新型的三联拉设备。在竞争激烈的拉丝机市场,单片机开发的专用控制器以及拉丝机专用变频器系统虽然结构简单造价低廉,但是对于工艺条件要求严格的高端拉丝机,由触摸屏、PLC与变频器系统集成的方案具有更加的自动控制技术优势。

拉丝机工艺描述

拉丝机种类繁多,按照拉丝的线径大小可以分为:微拉机(线径单位:丝)、小拉机(线径单位:0.Xmm)、中拉机(线径单位:mm)、大拉机(线径单位:1X mm)从拉丝机内部控制方式和机械结构来说,又可以分为水箱式、滑轮式、直进式等主要的几种。对于不同要求,不同精度规则的产品,不同的金属物料,可选择不同规格的拉丝机械。而于钢丝生产企业和高端丝材,针对材料特性,其精度要求和拉拔稳定度高,因此使用直进式拉丝机较多。尽管拉丝工艺不同,但其工作过程基本上可以划分成放线、拉丝、收线等3部份工艺过程。

金属丝的放线,对于整个拉丝机环节来说,其控制没有过高的精度要求,大部分拉丝机械,放线的操作是通过变频器驱动放线架实现的,但也有部分双变频控制的拉丝机械,甚至直接通过拉丝环节的丝线张力牵伸送进拉丝机,实现自由放线。拉丝环节是拉丝机为重要的工作环节。不同金属物料,不同的丝质品种和要求,拉丝环节有很大的不同,本文将详细分析设计直进式拉丝机自动控制系统。收线环节的工作速度决定了整个拉丝机械的生产效率,也是整个系统难控制的部分。在收线部分,常用的控制技术有同步控制与张力控制实现金属制品的收卷。

系统设计

3.1 直进式三联拉丝机系统方案设计

直进式三联拉丝机自动化系统框图参见图1。


图1直进式三联拉丝机自动化系统框图

三联拉属于大型拉丝机,拉出丝的线径较粗(大线径14mm),因此需要电机在低频启动时要能提供足够大的输出转矩。这样对于变频器的低频特性有较高的要求。因此在做方案时选择了使用B系列的变频器,矢量控制能较普通变频器在低频控制时,让电机的输出转矩有明显的提高。

三联拉不同于传统的拉丝机,一般的拉丝机分为双变频和单变频控制两种。因此在控制上只要PID参数在调试的过程当中能够合理设置,让收线的速度通过积分的作用跟随拉丝的速度,将积分增益设置的大一些,而积分周期要长一些,这样控制效果会比较理想。而三联拉分为两级拉伸,从拉的速度跟随主拉的速度,同时收线的速度要快速跟随从拉的速度。当主拉速度变化时,从拉及收线的速度要跟随主拉的速度同升同降,并且由于主拉加减速打破了之前的平衡状态,要求从拉及收线的要快速响应,达到新的平衡状态。尤其是收线要更加要快速响应。由于控制对象相互之间在速度上相互影响,因此在应用普通拉丝机的控制方法,使用简单的PID调整就很难使得从拉和收线达到平衡。积分作用的滞后,同时平衡杆可调节的范围又比较小,如果不能快速响应,会出现摆杆回到平衡位置的时间较长,同时在回到平衡位置后,由于积分的累计使得前后速度已经有较大的差异,又造成超过平衡位置,此时后一级又需要经过一段时间的积分作用才能将速度校正过来,但由于积分作用的滞后使得还未将平衡杆校正过来,可能丝就已经被拉断了。因此需要一种新的控制算法,要能够快速响应主速的变化,同时不能够超调,造成系统的震荡。具体的控制算法在下文进行详细的介绍及说明。

3.2 控制系统结构与算法设计

(1)系统控制结构。系统控制结构如图2所示。


图2 系统控制结构如

(2)控制算法设计。根据实际控制对象的特性,要求快速响应,同时调节范围有限。因此考虑用比例的关系进行调整,因为大拉机械设计上与微拉、小拉、中拉有很大的不同。前者收线都存在卷径的变化,由卷径的变化而影响速度。而大拉的收线部分不同于前者,可以忽略卷径的变化。算法如下公式所示:

其中K1为主拉与从拉之间的同步比例系数,K2为从拉与收线之间的同步比例系数。

Kf1, Kf2分别为反馈比例系数,ΔE1,ΔE2为偏离平衡位置的偏差,偏差有正负之分。

由于原料丝经过不同孔径的模具后,被拉成细线径的丝。因此伸长率很大,如果对伸长部分不进行处理,在低速和高速的时候,从拉及收线是来不及响应的。如何确定K1与K2的大小,可以通过原料丝与被拉后丝的体积不变的原则来计算。因此在人机界面上由操作者在图3画面进行设定。


图3 同步比例系数设定画面

(3)同步比例系数的确定方法。因为体积V=πr2L(r为丝的半径,L为丝的长度),因此从原料丝到经过模具后丝的线径发生了变化。假设进模具前的线径为r1,长度为L1;经过模具后丝的线径为r2,长度为L2,则根据体积不变的原则可以得出:

因此:r12L1= r22L2,即原料丝经过模具后被拉长了,伸长的系数K= L2/ L1= r12/ r22

经过这样的推导,就可以得出在前面控制算法中(1),(2)两式中同步比例系数K1、K2.

反馈比例系数Kf1、Kf2的确定是依据具体的调试效果来确定。

3.3 台达机电产品应用设计

(1)硬件构成。硬件构成参见表1。

表1 硬件选型

(2)PLC-变频器电气设计。在配置上选用比较有特色的DVP10SX00R的主机,该主机上自带2路模拟量输入和2路模拟量输出,解析度12位。另外选用DVP02DA-S的模块,一路作为两个平衡杆电位器的电源,另外一路作为收线变频器的速度给定。而主机上自带的2路DA,分别作为主拉变频、从拉变频的速度给定。另外2路AD则分别作为2路电位器的反馈输入,参见图4。这样不仅仅能够为客户节省大幅的成本,同时安装尺寸也非常小,节省了安装空间。


图4 PLC电控设计


4 系统调试
在整个调试过程中,不仅要合理的调整反馈比例系数。同时也要注意主拉、从拉在正常运行过程中出力的不同。可以想象由于原料丝的线径粗,即道拉伸主拉电机要出更多的力,即主拉在低速启动时需要较高的转距,如果仅仅单纯的去调试PLC程序,改变反馈比例系数,在拉不同线径的丝时,控制的效果一定是会发生变化的。我们不可能要求操作人员去动态的调整反馈比例系数。其实只要将主拉的V/F曲线调整的合理,提高低速转距或者根据实际情况还可以将主拉变频的控制方式改成矢量控制,来弥补低速运行时出力不足的情况。
如果主拉的控制方式采用矢量控制,在负载较重的时候,会发现平衡杆频繁震荡。
如果观察运行电流,会发现电机运行电流忽大忽小,之所以会出现这种情况的原因是由于采用矢量控制时,变频的输出电流会进行补偿,以提高电机的输出转矩。而电流改变的太频繁,会造成上述的现象,如何解决?可以增大转矩补偿低通滤波时间,增大该值可以非常有效的克服振动的现象。这一点是非常关键的。
整个系统在运行中可以分启动、加速、减速、停车过程。启动要求主拉具有较高的启动转矩,在拉大线径时也要能有足够的力量。在加速的过程中需要从拉的加速时间要小于主拉的加速时间,目的是为了快速跟随主拉速度的变化,同时也能及时的对平衡杆的变化响应出来。收线在加速的过程中,加速时间要比从拉更小,因为收线要更加快速的对主拉或从拉速度的变化进行快速响应。在减速和停车的过程中,也要合理的对主拉、从拉、收线的减速时间进行设定。以保证在停车时平衡杆能够停在平衡位置附近

1 引言

“PLC控制油压车床”是专为表壳等小五金加工设计的,以其高刚性、高精度、高品质、高效率、高寿命、性能稳定、结构简单、操作方便和成本低廉等优点广泛用于表壳加工行业,亦可用于小型轴、套类加工。该机床采用性能稳定的台达ES系列PLC和DOP-A57CSTD彩色人机界面构建系统,其核心部分在于控制系统,是控制中心。该系统操作简单、直观,以人性化的输入方式设计人机界面,程序转换简单快捷,可使操作者自如发挥,自动化程度高,在大批量生产时节省人力物力,能够实现产品生产的高效化、优质化。车床加工平台如图1所示。


2 系统特点及工艺参数


本机主轴轴承采用进口P4级主轴专用轴承,主轴自动油润滑,可保证机床高精度和使用寿命更长;主轴电机选用双速带高性能刹车系统;程控液压推动多刀刀架可保证加工尺寸准确、稳定;刀具中心高度可调节,操作方便,效率更高;精心设计的液压系统,可使机床空运转时,液压卸荷,节约电力,降低液压系统温度上升,延长油泵寿命;安装的温度、压力补偿装置,可保证在重复加工时的性能稳定可靠;电器箱、液压箱、冷却液箱均置于机箱内,减少了占地面积,机床外观整体性强。车床技术参数如表1所示。


3 相关操作说明

1)开机前检查:供电线路是否正常;油箱油位是否符合标准;外部气动是否连接完好。

2)开机后,在人机界面初始界面(图2)上点击进入主画面,在主画面(图3)上按加工工艺选择手动单步(图4)、全自动不同的加工方式,选择手动单步情况下总共列有5种工艺程序流程,在选择下一个加工工艺时,前一工艺过程自动运行完成后,才执行下程。


3)单步运行情况下,当选择完单步程序锁定(图3)设置后,此时程序只能运行锁定的当前程序,其他4种程序不能运行,若要运行其他程序,可先解除程序锁定功能。



4)电机具有自动保护功能,机器在30分钟内无任何动作,泵电机将停止工作,若要继续使用则要先起动泵。主轴的高低速选择在人机界面(图5)上操作完成,除手动外,其他程序的运行都是以外部起动按钮为给定信号的。



5)当设备运行过程中,将人机界面如上(图3)画面上点击运行监控画面触摸按钮,将画面切换到(图6)进行运行监控。

4 工艺流程

该机种具有五种单步固定工艺流程,用于产品的加工。行程开关定义如下:SL1—X11下托板前进到位;

SL2—X12下托板慢进;SL3—X13下托板回位;SL4—X14上托板前进到位;SL5—X15上托板慢进;SL6—X16上托板回位;

阀件定义为:

YV1—Y14下托板前进阀;

YV2—Y15下托板慢进阀;

YV3—Y16上托板前进阀;

YV4—Y17上托板慢进阀。

单步工艺流程1


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后开始慢进进行,下托板慢进碰到前进到位限位SL1后执行下托板延时(图7)的设定值,时间到后YV1,YV2断电,下托板回原位。


图7下托板延时的设定

单步工艺流程2


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后执行下托板延时(图7)的设定值,时间到后阀YV1,YV2断电下托板回退,碰到回退到位限位SL3信号后上托板前进阀YV3得电上托板前进,上托板前进碰到上托板前进到位SL4限位后,下托板前进阀YV1再次得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后执行下托板延时(图7)的设定值,时间到后阀YV1,YV2断电下托板回退,碰到回退到位限位SL3信号后上托板前进阀YV3断电,上托板回位。

单步工艺流程3


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后阀上托板前进阀YV3得电上托板前进,上托板前进碰到上托板慢进SL5限位后,上托板慢进阀YV4得电,上托板慢前进碰到前进到位限位SL4后阀YV1,YV2断电下托板回退,碰到回退到位限位SL3信号后上托板前进阀YV3,YV4断电,上托板回位。

单步工艺流程4


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后阀上托板前进阀YV3得电上托板前进,上托板前进碰到上托板慢进SL5限位后,上托板慢进阀YV4得电,上托板慢前进碰到前进到位限位SL4后执行上托板延时(图6)的设定值,时间到后阀YV3,YV4断电上托板回退,上托板回退碰到回退到位限位SL6信号后下托板前进阀YV1,YV2断电,下托板回位。

单步工艺流程5


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后阀上托板前进阀YV3得电上托板前进,上托板前进碰到上托板慢进SL5限位后,上托板慢进阀YV4得电,上托板慢前进碰到前进到位限位SL4后执行上托板延时(图6)的设定值,时间到后阀YV3,YV4断电上托板回退,下托板前进阀YV1,YV2保持前进位不动。

全自动工艺流程:


起动,恢复原点,阀YV1得电,下托板前进碰到下托板慢进限位SL2后阀YV2得电下托板开始慢进,下托板慢进碰到前进到位限位SL1后执行下托板延时(图6)的设定值,时间到后阀YV1,YV2断电下托板回退,碰到回退到位限位SL3信号后上托板前进阀YV3得电上托板前进,上托板前进碰到上托板慢进SL5限位后,上托板慢进阀YV4得电,上托板慢前进碰到前进到位限位SL4后执行上托板延时(图6)的设定值,时间到后阀YV3,YV4断电上托板回退,上托板回退碰到回退到位限位SL6信号后下托板前进阀YV1再次得电进入下一个循环。

5 设备系统保护

在人机界面内通过宏指令读出系统时间,分别赋值给不同的数据寄存器,如图8和图9所示。通过自定义输入时间年月日和系统本身时间进行比较,通过程序判断当系统时间超过设定时间时,系统自动停止运行。


图8数据寄存器赋值


图9年月日时间赋值

6 结束语

控制系统经过设备调试,各项性能指标达到客户要求并得到认可,说明台达PLC、人机界面在表壳等小五金加工油压车床设备当中的成功应用,已经得到客户的好评。


展开全文
优质商家推荐 拨打电话